100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Empirical economics summary of lectures and bonus explanations

Beoordeling
5,0
(1)
Verkocht
21
Pagina's
45
Geüpload op
12-03-2020
Geschreven in
2019/2020

This is my handwritten summary. It contains: - all the mandatory chapters from the book - some self-written bonus explanations to clarify difficult matters. - tips and tricks from the tutorial sessions. I also made sure that what was written in the lecture slides corresponded with the summary so that the questions on the exam would fit the words used in the summary. This is a hard course and reading a summary does not get you a good grade, so also really make sure to exercise a lot!

Meer zien Lees minder











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Heel boek samengevat?
Nee
Wat is er van het boek samengevat?
3.4.11.18.13.14.9.15.16.7.17
Geüpload op
12 maart 2020
Aantal pagina's
45
Geschreven in
2019/2020
Type
Samenvatting

Voorbeeld van de inhoud

Introduction to Econometrics
J.M. Wooldridge, Summary by Merijn

, To all those that read my summary. The book I have summarized here, plain
simply sucks. It is hard to read, difficult to understand and is very presumptuous
in its reasoning.

That’s why you’ll find a lot of extra parts in this summary, or restructurings of
chapters or even completely new paragraphs just to explain things.
Only then, was I able to create a concise and understandable summary for
myself and hopefully for you too.

Have fun while reading and excuse me for profanity here and there, it’s
sometimes just a really difficult mess 😊

,2 CONTENTS
3 The simple regression model...............................................................................................................6
3.1 Defining the simple regression model..........................................................................................6
3.1.1 Proving Exogeneity................................................................................................................6
3.1.2 Proving how exogeneity works..............................................................................................8
2.4 Units of measurement and functional form.................................................................................9
3.1.3 The effect of changing units of measurement on OLS statistics.............................................9
3.1.4 Incorporating nonlinearities in simple regression..................................................................9
3.1.5 So why the hell do we still call this a linear regression?......................................................10
4 Multiple regression analysis: estimation...........................................................................................10
4.1 Why go for multiple regression?.................................................................................................10
4.2 How multiple regression works..................................................................................................10
11 OLS and time-series data.................................................................................................................12
11.4 Using highly persistent time series in regression analysis.........................................................12
4.2.1 When something is strongly dependent..............................................................................12
4.2.2 Strong and weak dependence.............................................................................................13
4.2.3 Tricks to solve the issues with high persistence...................................................................13
18 Advanced time series topics............................................................................................................13
18.2 Testing for Unit Roots...............................................................................................................13
4.2.4 The Dickey Fuller test...........................................................................................................13
4.3 Spurious regression....................................................................................................................14
4.4 Cointergration and Error correction models...............................................................................14
4.5 Forecasting.................................................................................................................................14
4.5.1 Understanding how forecasting errors work.......................................................................14
4.5.2 Two types of predicting the future: Martingale and Exponential Smoothing......................15
4.5.3 Types of regression models used for forecasting.................................................................15
4.5.4 One-Step-Ahead Forecasting and its forecast interval.........................................................16
4.5.5 Granger causality.................................................................................................................16
4.5.6 Comparing one-step-ahead forecasts..................................................................................17
4.5.7 Multi-step-ahead forecasts..................................................................................................17
4.5.8 Forecasting trending, seasonal and integrated processes...................................................19
13 Pooling cross sections across time: Panel Data methods.................................................................19
4.6 Obtaining pooled cross-sectional data by adding time dummies...............................................19
4.6.1 The intuition........................................................................................................................19

, 4.6.2 Using the Chow test.............................................................................................................20
4.7 Difference-in-difference estimators............................................................................................22
4.7.1 The intuition........................................................................................................................22
4.7.2 Obtaining the variable through a regression analysis..........................................................22
4.7.3 How this relates to natural experiments..............................................................................24
4.8 Two-period panel data analysis..................................................................................................24
4.8.1 Pooled OLS and OVB............................................................................................................24
4.8.2 Controlling for time-unspecific factors................................................................................25
4.9 Policy analysis with two-period data..........................................................................................26
4.10 Differencing with more than two time periods.........................................................................26
4.10.1 Using a Chow test on this type of differencing..................................................................26
5 Advanced panel data methods..........................................................................................................28
5.1 Fixed effects estimation..............................................................................................................28
5.1.1 How this estimation works..................................................................................................28
5.1.2 Including dummies in fixed estimator regression................................................................28
5.1.3 To first-difference or to demean?........................................................................................29
5.1.4 What happens to fixed effects with unbalanced panels......................................................29
5.2 Random effects models..............................................................................................................29
5.2.1 The intuition........................................................................................................................29
5.2.2 The composite error term and serial correlation.................................................................30
5.2.3 Implications of using the theta............................................................................................31
5.2.4 To random effects or not to random effects........................................................................31
5.3 The correlated random effects approach...................................................................................31
9 More specification on data issues.....................................................................................................32
9.2 Using proxy variables for unobserved explanatory variables.....................................................32
9.4 Measurement errors...................................................................................................................33
5.3.1 Measurement errors in the dependent variable..................................................................33
5.3.2 Measurement errors in the independent variable...............................................................33
15 Instrumental Variables Estimation and 2SLS....................................................................................35
5.4 Identifying the instrumental variable (IV)...................................................................................35
5.4.1 Finding the right IV..............................................................................................................35
5.4.2 How the IV works.................................................................................................................35
5.4.3 Using instrumental variables to infer...................................................................................36
5.4.4 What happens when you use a bad instrumental variable..................................................36
5.5 Using IV in multiple regression...................................................................................................36
5.6 Two stage least squares..............................................................................................................37

Beoordelingen van geverifieerde kopers

Alle reviews worden weergegeven
2 jaar geleden

5,0

1 beoordelingen

5
1
4
0
3
0
2
0
1
0
Betrouwbare reviews op Stuvia

Alle beoordelingen zijn geschreven door echte Stuvia-gebruikers na geverifieerde aankopen.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
Merijnvan Universiteit Utrecht
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
179
Lid sinds
10 jaar
Aantal volgers
138
Documenten
15
Laatst verkocht
1 maand geleden

3,5

18 beoordelingen

5
7
4
5
3
0
2
2
1
4

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen