Suites
1.1 Raisonnement par récurrence
Théorème 1
On veut prouver qu'une certaine propriété P (n), dépendant d'un entier naturel n, est vraie
pour tout entier naturel n.
Si
• P (0) est vraie,
• pour tout entier naturel n, P (n) vraie implique P (n + 1) vraie,
Alors
pour tout entier naturel n, P (n) est vraie.
Démonstration. Ce théorème est admis ■
Il se peut que la propriété P (n) ne soit pas vraie pour quelques valeurs de n parmi les premières et
ne commence à être vraie qu'à partir d'un certain rang n0 auquel cas on utilise le théorème suivant :
Théorème 2
On veut prouver qu'une certaine propriété P (n), dépendant d'un entier naturel n, est vraie
pour tout entier naturel n supérieur ou égal à un certain entier naturel n0 .
Si
• P (n0 ) est vraie,
• pour tout entier naturel n ⩾ n0 , P (n) vraie implique P (n + 1) vraie,
Alors
pour tout entier naturel n ⩾ n0 , P (n) est vraie.
Démonstration. Ce théorème est admis ■
L'étape qui consiste à véri
er que P (n0 ) est vraie s'appelle l'initialisation et l'étape qui consiste
à véri
er que pour tout n ⩾ n0 , si la propriété P (n) est vraie alors la propriété P (n + 1) est
vraie s'appelle l'hérédité ou encore cette étape consiste à véri
er que la propriété est héréditaire.
L'hypothèse faite dans l'hérédité à savoir si P(n) est vraie s'appelle l'hypothèse de récurrence.
6
, 1.2 Limites d'une suite
1.2.1 Dé
nition de la convergence d'une suite
Dé
nition 3
Soient (un )n∈N une suite de nombre réels et ℓ un nombre réel.
On dit que la suite (un )n∈N a pour limite ℓ quand n tend vers +∞ ou aussi que la suite
(un )n∈N converge vers ℓ si et seulement si tout intervalle ouvert non vide contenant ℓ
contient tous les termes de la suite à partir d'un certain rang.
Si la suite (un )n∈N a une limite ℓ qui est un réel, on dit que la suite (un )n∈N converge ou
que la suite (un )n∈N est convergente.
Dans le cas contraire, on dit que la suite (un )n∈N diverge ou que la suite (un )n∈N est
divergente.
Interprétation graphique On place ℓ sur l'axe des ordonnées puis on se donne un intervalle
ouvert I quelconque contenant ℓ. A partir d'un certain rang p dépendant de l'intervalle I que l'on
s'est donné, tous les termes de la suite appartiennent à l'intervalle I . Pour n'importe quel intervalle
ouvert I contenant ℓ, aussi petit soit-il, on peut fournir un tel rang p.
an
ℓ
p n
Théorème 4
Si la suite (un )n∈N converge, le nombre ℓ de la dé
nition 7 est unique.
Démonstration. Soit (un )n∈N une suite réelle convergente. Supposons que la suite (un )n∈N converge
à la fois vers le réel ℓ et vers le réel ℓ′ où de plus ℓ < ℓ′ .
Soit ϵ = ℓ−ℓ un réel strictement positif.
′
2
Posons I1 = ]ℓ − ϵ; ℓ + ϵ[ et I2 = ]ℓ′ − ϵ, ℓ′ + ϵ[. Les intervalles I1 et I2 sont disjoints ou encore les
intervalles I1 et I2 n'ont aucun nombre réel en commun
ℓ ℓ + ϵ = ℓ′ − ϵ ℓ′
I1 I2
′
ϵ = (ℓ − ℓ )/2
(ℓ − ℓ′ ) = 2ϵ
7