100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary Engineering physics

Beoordeling
-
Verkocht
-
Pagina's
28
Geüpload op
09-11-2024
Geschreven in
2024/2025

Title: Electrodynamics - Comprehensive Notes & Study Guide Description: This Electrodynamics document provides a clear, organized, and detailed study guide perfect for students of electrical engineering or physics. Covering fundamental topics from Coulomb's Law to Maxwell's Equations, it includes explanations, derivations, and diagrams to enhance understanding. Each topic is broken down with key formulas, solved examples, and practice problems to help students grasp complex concepts efficiently. Topics Covered: Electrostatic Fields and Potential Electric Flux and Gauss’s Law Dielectric Materials and Polarization Conductors and Capacitance Magnetostatics Faraday's Law and Induced EMF Maxwell’s Equations and Electromagnetic Waves Practical Applications and Problem Solving Techniques Ideal for exam preparation or as a reference throughout the semester, this guide will boost your confidence and understanding in Electrodynamics

Meer zien Lees minder
Instelling
Vak










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Vak

Documentinformatie

Geüpload op
9 november 2024
Aantal pagina's
28
Geschreven in
2024/2025
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

M.No. 2.1

Maxwell’s Equations

Electrodynamics before Maxwell

So far, we have encountered the following laws, specifying the divergence and curl
of electric and magnetic fields:

1
(i)   E  ρ (Gauss’s law for electricity),
ε0


(ii)   B  0 (Gauss’s law for magnetism),

B
(iii)   E   (Faraday’s law)
t

(iv)   B  µ 0 J (Ampere’s law)

These equations represent the state of electromagnetic theory over a century ago,
when Maxwell began his work. They were not written in so compact a form in those
days, but their physical content was familiar. Now, it happens there is a fatal
inconsistency in these formulas. It has to do with the old rule that divergence of curl
is always zero. If you apply the divergence to number (iii), everything works out:

 B  
    E           B 
 t  t

The left side is zero because divergence of curl is zero; the right side is zero by
virtue of equation (ii). But when you do the same thing to number (iv), you get into
trouble:

     B   µ 0    J  ------------ (1)


the left side must be zero, but the right side, in general, is not. For steady currents,
the divergence of J is zero, but evidently when we go beyond magneto statics

,Ampere’s law cannot be right. There’s another way to see that Ampere’s law is
bound to fail for nonsteady currents. Suppose we’re in the process of charging up a
capacitor (Fig. 1). In integral form, Ampere’s law reads

 B  dl  µ 0Ienc
In this case, the simplest surface lies in the plane of the loop - the wire punctures
this surface, so Ienc = I. Fine-but what if we draw instead the balloon-shaped
surface in Fig. 1? No current passes through this surface, and we conclude that Ienc
= 0! We never had this problem in magnetostatics because the conflict arises only
when charge is piling up somewhere (in this case, on the capacitor plates). But for
nonsteady currents (such as this one) “the current enclosed by a loop” is an ill-
defined notion, since it depends entirely on what surface we use. Remember that
the Amperian loop could be some contorted shape that doesn’t even lie in a plane.




Of course, we had no right to expect Ampere’s law to hold outside of
magnetostatics; after all, we derived it from the Biot-Savart law. However, in
Maxwell’s time there was no experimental reason to doubt that Ampere’s law was
of wider validity. The flaw was a purely theoretical one, and Maxwell fixed it by
purely theoretical arguments.

, How Maxwell Fixed Ampere’s Law

The problem is on the right side of Eq. (1) which should be zero, but isn’t. Applying
ρ
the continuity equation   J   and Gauss’s law, the offending term can be
t
rewritten:

ρ   E 
J      ε 0  E      ε 0 
t t  t 

It might occur to you that if we were to combine ε 0 (E / t ) with J, in Ampere’s law, it
would be just right to kill off the extra divergence:

E
 B  μ 0J  μ 0 ε 0 ---------- (2)
t

Such a modification changes nothing, as far as magnetostatics is concerned: when
E is constant, we still have ∇ x B = µ0J. In fact, Maxwell’s term is hard to detect in
ordinary electromagnetic experiments, where it must compete for recognition with
J; that’s why Faraday and the others never discovered it in the laboratory.
However, it plays a crucial role in the propagation of electromagnetic waves. Apart
from curing the defect in Ampere’s law, Maxwell’s term has a certain aesthetic
appeal: Just as a changing magnetic field induced an electric field (Faraday’s law),
so A changing electric field induces a magnetic field.

Of course, theoretical convenience and aesthetic consistency are only suggestive-
there might, after all, be other ways to doctor up Ampere’s law. The real
confirmation of Maxwell’s theory came in 1888 with Hertz’s experiments on
electromagnetic waves. Maxwell called his extra term the displacement current
density.

E
Jd  ε0 --------- (3)
t
€6,91
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
rajkumarrekhapalli

Maak kennis met de verkoper

Seller avatar
rajkumarrekhapalli Ragiv Gandhi University of knowledge technologies
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
0
Lid sinds
1 jaar
Aantal volgers
0
Documenten
1
Laatst verkocht
-

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen