100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
College aantekeningen

Class notes Jee/neet notes for air dreamers

Beoordeling
-
Verkocht
-
Pagina's
11
Geüpload op
06-11-2024
Geschreven in
2022/2023

This calculus notes will be helpful for upcoming test series for both jee and neet aspirants also this will boost your maths skills. All the best jee/ neet crackers

Instelling
Vak









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Vak

Documentinformatie

Geüpload op
6 november 2024
Aantal pagina's
11
Geschreven in
2022/2023
Type
College aantekeningen
Docent(en)
Professor joel
Bevat
11 and 12th for jee and neet

Onderwerpen

Voorbeeld van de inhoud

Calculus Cheat Sheet


Limits
Definitions
Precise Definition : We say lim f (x) = L if for Limit at Infinity : We say lim f (x) = L if we can
x→a x→∞
every ε > 0 there is a δ > 0 such that whenever make f (x) as close to L as we want by taking x
0 < |x − a| < δ then |f (x) − L| < ε. large enough and positive.

“Working” Definition : We say lim f (x) = L if There is a similar definition for lim f (x) = L
x→a x→− ∞
we can make f (x) as close to L as we want by except we require x large and negative.
taking x sufficiently close to a (on either side of a)
without letting x = a. Infinite Limit : We say lim f (x) = ∞ if we can
x→a
make f (x) arbitrarily large (and positive) by taking x
Right hand limit : lim f (x) = L. This has the sufficiently close to a (on either side of a) without
x→a+
same definition as the limit except it requires x > a. letting x = a.

Left hand limit : lim f (x) = L. This has the same There is a similar definition for lim f (x) = −∞

x→a x→a
definition as the limit except it requires x < a. except we make f (x) arbitrarily large and negative.


Relationship between the limit and one-sided limits
lim f (x) = L ⇒ lim f (x) = lim− f (x) = L lim f (x) = lim− f (x) = L ⇒ lim f (x) = L
x→a x→a+ x→a x→a+ x→a x→a

lim f (x) 6= lim− f (x) ⇒ lim f (x)Does Not Exist
x→a+ x→a x→a



Properties
Assume lim f (x) and lim g(x) both exist and c is any number then,
x→a x→a

f (x)
 lim f (x)
1. lim [cf (x)] = c lim f (x) 4. lim = x→a provided lim g(x) 6= 0
x→a x→a x→a g(x) lim g(x) x→a
x→a
h in
n
2. lim [f (x) ± g(x)] = lim f (x) ± lim g(x) 5. lim [f (x)] = lim f (x)
x→a x→a x→a x→a x→a
hp i q
3. lim [f (x)g(x)] = lim f (x) lim g(x) 6. lim n f (x) = n lim f (x)
x→a x→a x→a x→a x→a




Basic Limit Evaluations at ±∞
1. lim ex = ∞ & lim ex = 0 5. n even : lim xn = ∞
x→∞ x→− ∞ x→± ∞

2. lim ln(x) = ∞ & lim ln(x) = −∞ 6. n odd : lim xn = ∞ & lim xn = −∞
x→∞ x→ ∞ x→− ∞
x→0+

b 7. n even : lim a xn + · · · + b x + c = sgn(a)∞
x→± ∞
3. If r > 0 then lim =0
x→∞ xr
8. n odd : lim a xn + · · · + b x + c = sgn(a)∞
r x→∞
4. If r > 0 and x is real for negative x
b 9. n odd : lim a xn + · · · + c x + d = − sgn(a)∞
then lim =0 x→−∞
x→− ∞ xr
Note : sgn(a) = 1 if a > 0 and sgn(a) = −1 if a < 0.




© Paul Dawkins - https://tutorial.math.lamar.edu

, Calculus Cheat Sheet


Evaluation Techniques
Continuous Functions L’Hospital’s/L’Hôpital’s Rule
If f (x)is continuous at a then lim f (x) = f (a) f (x) 0 f (x) ±∞
x→a If lim = or lim = then,
x→a g(x) 0 x→a g(x) ±∞
Continuous Functions and Composition f (x) f 0 (x)
lim = lim 0 , a is a number, ∞ or −∞
x→a g(x) x→a g (x)
f (x) is continuous at b and lim g(x) = b then
 x→a
lim f (g(x)) = f lim g(x) = f (b) Polynomials at Infinity
x→a x→a

p(x) and q(x) are polynomials. To compute
Factor and Cancel p(x)
x2 + 4x − 12 (x − 2)(x + 6) lim factor largest power of x in q(x) out of
x→± ∞ q(x)
lim = lim
x→2 x2 − 2x x→2 x(x − 2) both p(x) and q(x) then compute limit.
x+6 8 3x2 − 4 x2 3 − x42

= lim = =4 lim = lim
x→2 x 2 x→− ∞ 5x − 2x2 x→− ∞ x2 5 − 2

x

Rationalize Numerator/Denominator 3 − x42 3
√ √ √ = lim =−
3− x 3− x 3+ x x→− ∞ 5 − 2 2
lim 2 = lim 2 √ x
x→9 x − 81 x→9 x − 81 3 + x
Piecewise Function
9−x −1
= lim √ = lim √ x2 + 5

x→9 (x2 − 81)(3 + x) x→9 (x + 9)(3 + x) if x < −2
lim g(x) where g(x) =
x→−2 1 − 3x if x ≥ −2
−1 1
= =−
(18)(6) 108 Compute two one sided limits,
lim g(x) = lim x2 + 5 = 9
Combine Rational Expressions x→−2− x→−2−
    lim g(x) = lim 1 − 3x = 7
1 1 1 1 x − (x + h) x→−2+ x→−2+
lim − = lim
h→0 h x+h x h→0 h x(x + h)
One sided limits are different so lim g(x) doesn’t
  x→−2
1 −h −1 1 exist. If the two one sided limits had been equal
= lim = lim =− 2
h→0 h x(x + h) h→0 x(x + h) x then lim g(x) would have existed and had the
x→−2
same value.


Some Continuous Functions
Partial list of continuous functions and the values of x for which they are continuous.
1. Polynomials for all x. 6. ln(x) for x > 0.
2. Rational function, except for x’s that give 7. cos(x) and sin(x) for all x.
division by zero.
√ 8. tan(x) and sec(x) provided
3. n x (n odd) for all x. 3π π π 3π
√ x 6= · · · , − , − , , ,···
4. n x (n even) for all x ≥ 0. 2 2 2 2
9. cot(x) and csc(x) provided
5. ex for all x.
x 6= · · · , −2π, −π, 0, π, 2π, · · ·


Intermediate Value Theorem
Suppose that f (x) is continuous on [a, b] and let M be any number between f (a) and f (b). Then there exists
a number c such that a < c < b and f (c) = M .


© Paul Dawkins - https://tutorial.math.lamar.edu
€3,49
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
mariyamariya1

Maak kennis met de verkoper

Seller avatar
mariyamariya1
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
0
Lid sinds
1 jaar
Aantal volgers
0
Documenten
1
Laatst verkocht
-

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen