100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Tentamen (uitwerkingen)

Linear Algebra And Its Applications 6th Edition Solutions Manual PDF guaranteed pass latest

Beoordeling
-
Verkocht
-
Pagina's
57
Cijfer
A+
Geüpload op
03-11-2024
Geschreven in
2024/2025

Linear Algebra And Its Applications 6th Edition Solutions Manual PDF guaranteed pass latest Question 1 Which of the following is a property of a vector space? A) It must contain the zero vector. B) It must be finite-dimensional. C) It must contain an infinite number of vectors. D) It cannot be closed under scalar multiplication. Correct Answer: A) It must contain the zero vector. Rationale: A vector space must contain the zero vector as part of its axioms. It can be finite or infinite-dimensional and must be closed under vector addition and scalar multiplication. Question 2 If AAA is a 3×33 times 33×3 matrix, what is the maximum number of linearly independent columns it can have? A) 1 B) 2 C) 3 D) 4 Correct Answer: C) 3 Rationale: A 3×33 times 33×3 matrix can have at most 3 linearly independent columns, corresponding to its number of rows. Thus, the rank of matrix AAA can be at most 3. Question 3 What is the determinant of the matrix A=(1234)A = begin{pmatrix} 1 & 2 3 & 4 end{pmatrix}A=(1324)? A) -2 B) 2 C) 0 D) 1 Correct Answer: A) -2 Rationale: The determinant of a 2×22 times 22×2 matrix A=(abcd)A = begin{pmatrix} a & b c & d end{pmatrix}A=(acbd) is calculated as ad−bcad - bcad−bc. For matrix AAA: det(A)=(1)(4)−(2)(3)=4−6=−2.text{det}(A) = (1)(4) - (2)(3) = 4 - 6 = - (A)=(1)(4)−(2)(3)=4−6=−2. Question 4 If the eigenvalue of a matrix AAA is λlambdaλ, what can be said about the characteristic polynomial? A) It is linear. B) It is quadratic. C) It has λlambdaλ as a root. D) It is always positive. Correct Answer: C) It has λlambdaλ as a root. Rationale: The eigenvalue λlambdaλ of a matrix AAA is a solution to the characteristic polynomial, which is given by det(A−λI)=0text{det}(A - lambda I) = 0det(A−λI)=0. Thus, λlambdaλ is a root of this polynomial. Question 5 Which of the following statements is true about linear transformations? A) They always increase the dimension of a vector space. B) They map lines to lines or points. C) They cannot be represented by matrices. D) They are not defined for infinite-dimensional spaces. Correct Answer: B) They map lines to lines or points. Rationale: Linear transformations preserve the operations of vector addition and scalar multiplication, meaning that they map lines in the domain to lines in the codomain. Question 6 Consider the vectors v1=(100)mathbf{v_1} = begin{pmatrix} 1 0 0 end{pmatrix}v1=100 and v2=(010)mathbf{v_2} = begin{pmatrix} 0 1 0 end{pmatrix}v2=010. Are these vectors linearly independent? A) Yes B) No C) It depends on the context. D) Only if the third vector is included. Correct Answer: A) Yes Rationale: Two vectors are linearly independent if the only solution to c1v1+c2v2=0c_1mathbf{v_1} + c_2mathbf{v_2} = 0c1v1+c2v2=0 is c1=c2=0c_1 = c_2 = 0c1=c2=0. Since v1mathbf{v_1}v1 and v2mathbf{v_2}v2 point in different directions, they are indeed linearly independent. Question 7 What is the rank of the matrix B=()B = begin{pmatrix} 1 & 2 & 3 0 & 0 & 0 4 & 5 & 6 end{pmatrix}B=? A) 0 B) 1 C) 2 D) 3 Correct Answer: C) 2 Rationale: The rank of a matrix is the maximum number of linearly independent row or column vectors. Here, the first and the third rows are linearly independent, while the second row is a zero row. Thus, the rank is 2.

Meer zien Lees minder
Instelling
MATH101
Vak
MATH101











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
MATH101
Vak
MATH101

Documentinformatie

Geüpload op
3 november 2024
Aantal pagina's
57
Geschreven in
2024/2025
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Voorbeeld van de inhoud

latest
bulletin




latest

,Linear Algebra And Its
Applications 6th Edition
Solutions Manual PDF
guaranteed pass
latest
Question 1

Which of the following is a property of a vector space?

A) It must contain the zero vector.
B) It must be finite-dimensional.
C) It must contain an infinite number of vectors.
D) It cannot be closed under scalar multiplication.

Correct Answer: A) It must contain the zero vector.
Rationale: A vector space must contain the zero vector as part of its axioms. It can
be finite or infinite-dimensional and must be closed under vector addition and
scalar multiplication.



Question 2

If AAA is a 3×33 \times 33×3 matrix, what is the maximum number of linearly
independent columns it can have?

A) 1
B) 2
C) 3
D) 4

,Correct Answer: C) 3
Rationale: A 3×33 \times 33×3 matrix can have at most 3 linearly independent
columns, corresponding to its number of rows. Thus, the rank of matrix AAA can
be at most 3.



Question 3

What is the determinant of the matrix A=(1234)A = \begin{pmatrix} 1 & 2 \\ 3
& 4 \end{pmatrix}A=(1324)?

A) -2
B) 2
C) 0
D) 1

Correct Answer: A) -2
Rationale: The determinant of a 2×22 \times 22×2 matrix A=(abcd)A =
\begin{pmatrix} a & b \\ c & d \end{pmatrix}A=(acbd) is calculated as ad−bcad -
bcad−bc.
For matrix AAA:

det(A)=(1)(4)−(2)(3)=4−6=−2.\text{det}(A) = (1)(4) - (2)(3) = 4 - 6 = -
2.det(A)=(1)(4)−(2)(3)=4−6=−2.


Question 4

If the eigenvalue of a matrix AAA is λ\lambdaλ, what can be said about the
characteristic polynomial?

A) It is linear.
B) It is quadratic.
C) It has λ\lambdaλ as a root.
D) It is always positive.

Correct Answer: C) It has λ\lambdaλ as a root.
Rationale: The eigenvalue λ\lambdaλ of a matrix AAA is a solution to the
characteristic polynomial, which is given by det(A−λI)=0\text{det}(A - \lambda I)
= 0det(A−λI)=0. Thus, λ\lambdaλ is a root of this polynomial.

, Question 5

Which of the following statements is true about linear transformations?

A) They always increase the dimension of a vector space.
B) They map lines to lines or points.
C) They cannot be represented by matrices.
D) They are not defined for infinite-dimensional spaces.

Correct Answer: B) They map lines to lines or points.
Rationale: Linear transformations preserve the operations of vector addition and
scalar multiplication, meaning that they map lines in the domain to lines in the
codomain.



Question 6

Consider the vectors v1=(100)\mathbf{v_1} = \begin{pmatrix} 1 \\ 0 \\ 0
\end{pmatrix}v1=100 and v2=(010)\mathbf{v_2} = \begin{pmatrix} 0 \\ 1 \\ 0
\end{pmatrix}v2=010. Are these vectors linearly independent?

A) Yes
B) No
C) It depends on the context.
D) Only if the third vector is included.

Correct Answer: A) Yes
Rationale: Two vectors are linearly independent if the only solution to
c1v1+c2v2=0c_1\mathbf{v_1} + c_2\mathbf{v_2} = 0c1v1+c2v2=0 is
c1=c2=0c_1 = c_2 = 0c1=c2=0. Since v1\mathbf{v_1}v1 and v2\mathbf{v_2}v2
point in different directions, they are indeed linearly independent.



Question 7

What is the rank of the matrix B=(123000456)B = \begin{pmatrix} 1 & 2 & 3
\\ 0 & 0 & 0 \\ 4 & 5 & 6 \end{pmatrix}B=104205306?

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
JoyceWWales Teachme2-tutor
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
109
Lid sinds
2 jaar
Aantal volgers
16
Documenten
2040
Laatst verkocht
1 week geleden
MitchelleWales

HI, WELCOME TO MY PAGE EXCELLENT HOMEWORK HELP AND TUTORING ,ALL KIND OF QUIZ AND EXAMS WITH GUARANTEE OF AN A+ Hi there! I'm JOYCE, I'm, a dedicated medical doctor (MD) with a passion for helping students excel in their exams. With my extensive experience in the medical field, I provide comprehensive support and effective study techniques to ensure academic success. My unique approach combines medical knowledge with practical strategies, making me an invaluable resource for students aiming for top performance. Discover my proven methods and start your journey to academic excellence with me on Stuvia today and I'm here to provide high-quality study materials to help you succeed. With a focus on clarity and usefulness, my notes are designed to make your studying easier and more efficient. If you ever need assistance or have any questions, feel free to reach out.

Lees meer Lees minder
3,9

25 beoordelingen

5
14
4
1
3
6
2
1
1
3

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen