100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary Essential Cheat Sheet: Financial Markets and Institutions

Beoordeling
-
Verkocht
5
Pagina's
10
Geüpload op
30-10-2024
Geschreven in
2023/2024

Master Financial Markets and Institutions with the Ultimate Cheat Sheet! Get ahead in Financial Markets and Institutions with a cheat sheet designed to make studying easier and more effective. Packed with summaries of key concepts and essential formulas, this guide condenses the most important topics into easy-to-digest sections, giving you everything you need to excel. What’s Inside: Summaries of Key Concepts: Simplified explanations of financial markets, institutions, and instruments. Essential Formulas: All the critical equations for calculations related to interest rates, risk, returns, and more. Quick Reference Sections: Organized layout for fast access to each topic. Perfect for quick reviews before exams or as a go-to resource throughout the course. Get ready to study smarter and achieve success with confidence!

Meer zien Lees minder









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
30 oktober 2024
Aantal pagina's
10
Geschreven in
2023/2024
Type
Samenvatting

Voorbeeld van de inhoud

1




Essential Cheat Sheet: Financial Contents
WEEK 1 - Yield curve and fixed income instruments ................................................ 2
Markets and Institutions WEEK 2 - Monetary policy, inflation, yield curve inversion ...................................... 5
WEEK 3 - FX markets: instruments, theoretical parities, and their violation ........... 7
WEEK 4 – Banking, regulation and market liquidity ................................................. 9
Author: Linh Nguyen WEEK 5 – Asset management ................................................................................ 10
Study year: 2023 – 2024

Course name: Financial Markets and Institutions

Vrije Universiteit Amsterdam

, 2

WEEK 1 - Yield curve and fixed income instruments Continuous compounding:
Yield curve: Collection of Rf interest rates for different maturities {𝑟(0, 𝑇)} 𝑇 𝑒 −(𝑇2−𝑇1)×𝑓(0,𝑇1,𝑇2) = 𝐹(0, 𝑇1 , 𝑇2 ) = e−𝑟(0,𝑇2)×𝑇2+𝑟(0,𝑇1)×𝑇1
• Upward sloping: Normal curve. S/T IR < L/T IR. Investors demand higher return for holding L/T − ln 𝐹(0, 𝑇1 , 𝑇2 )
securities. 𝑓(0, 𝑇1 , 𝑇2 ) =
𝑇2 − 𝑇1
• Flat: Investors are indifferent.
• Inverted: S/T IR > L/T IR. Signs of recession or that S/T rates are expected to go lower. 2. Basics of interest-rate risk management
Yield to maturity (YTM): the annual expected return of a bond if held until maturity, also referred to P: price of financial instruments; r: interest rates
as book yield. If IRs change by Δ𝑟, then price changes by Δ𝑃. The relationship (absolute) is
𝑁 1 ′′
𝑦 −𝑛𝑇𝑖 Δ𝑃 ≈ 𝑃𝑟′ ∗ Δ𝑟 + 𝑃𝑟𝑟 ∗ (Δ𝑟)2
𝑃(𝑡, 𝑇) = ∑ 𝐶𝐹𝑖 (1 + ) 2
𝑛 ′ ′′
𝑖=1 𝑃𝑟 and 𝑃𝑟 are the first and second derivative of P w.r.t. r.
Bootstrapping the curve: Constructing a (zero coupon) yield curve from coupon bearing products The relationship (relative, %) is
like coupon bonds or swaps, FRAs. Δ𝑃 1 1 1 ′′
Example: IR r1(0,1) associated with discount factor ≈ − (− 𝑃𝑟′ ) Δ𝑟 + ( 𝑃𝑟𝑟 ) (Δ𝑟)2
𝑃 𝑃 2 𝑃
1 1 Δ𝑃 1
𝑍(0,1) = ⇒ 𝑟1 (0,1) = − 1 ≈ 0.0417 = 4.17% = 417𝑏. 𝑝. = −𝐷Δ𝑟 + 𝐶(Δ𝑟)2
1 + 𝑟1 (0,1) 𝑍(0,1) 𝑃 2
1
Duration: 𝐷 = − 𝑃𝑟′ (minus 1 over P times first derivative of P w.r.t. r)
𝑃
N-times compounded IR, 𝒓𝒏 (𝟎, 𝑻𝒊 ) Continuous compounding IR 𝒓(𝟎, 𝑻𝒊 ): 𝒏 = ∞ 1′′ (1 over P times second derivative of P w.r.t. r)
Convexity: 𝐶 = 𝑃𝑟𝑟
−𝑛𝑇𝑖 𝑃
𝑟𝑛 (0, 𝑇𝑖 )
𝑍(0, 𝑇𝑖 ) = (1 + ) 𝑍(0, 𝑇𝑖 ) = 𝑒 −𝑟(0,𝑇𝑖)𝑇𝑖
𝑛 DURATION AND CONVEXITY OF ZERO-COUPON BOND
1 ln 𝑍(0, 𝑇)
𝑟𝑛 (0, 𝑇) = 𝑛 (𝑍(0, 𝑇)−𝑛𝑇 − 1) 𝑟(0, 𝑇) = − Time-t price of zero-coupon bond, maturity T is
𝑇
𝒁(𝒕, 𝑻) = 𝑒 −𝑟(𝑡,𝑇)(𝑇−𝑡)
𝑟(𝑡, 𝑇) is continuously compounded interest rate.
Discount curve: A collection of zero-coupon bond prices {𝑍(0, 𝑇)] 𝑇 for different maturities
Duration of zero-coupon bond = time to maturity D = T – t
Duration measures the sensitivity of prices to parallel shifts of the yield curve.
Forward rate agreement (FRA): noncash contract between two counterparties
Convexity of zero-coupon bond = time to maturity squared. C = (T – t )2
• Time 0, Notional amount N and the forward rate 𝑓𝑛 (0, 𝑇1 , 𝑇2 ) are agreed
• Time 𝑇1 < 𝑇2 , 𝑟𝑛 (𝑇1 , 𝑇2 ) is revealed.
DURATION AND CONVEXITY OF COUPON BOND (CP BOND)
• Time T2:
CP bond price P(t,T), CP payment times Ti : i = 1, 2, …, n; Tn = T and payments CFi
o Buyer needs to pay 𝑁 ∗ Δ𝑓𝑛 (0, 𝑇1 , 𝑇2 )
Or Time-t price of CP bond, maturity T
o Seller needs to give 𝑁 ∗ Δ𝑟𝑛 (𝑇1 , 𝑇2 ) 𝑛 𝑛
1 𝑃(𝑡, 𝑇𝑖 ) = ∑ 𝐶𝐹𝑖 ∗ 𝑍(𝑡, 𝑇𝑖 ) = ∑ 𝐶𝐹𝑖 𝑒 −𝑟(𝑡,𝑇𝑖 )(𝑇𝑖 −𝑡)
Δ≡
𝑛 𝑖=1 𝑖=1
• So, the parties exchange the dollar difference between two rates at maturity T2: 𝑛
𝑦 −𝑛𝑇𝑖
𝑁 ∗ Δ[𝑟𝑛 (𝑇1 , 𝑇2 ) − 𝑓𝑛 (0, 𝑇1 , 𝑇2 )] 𝑃(𝑡, 𝑇𝑖 ) = ∑ 𝐶𝐹𝑖 ∗ (1 + )
𝑛
To ensure that the FRA costs nothing at inception, forward rate 𝑓𝑛 (0, 𝑇1 , 𝑇2 ) must be set as: 𝑖=1
where n = number of cashflow per year; y = YTM
𝑛(𝑇2 −𝑇1 ) 𝑍(0, 𝑇1 )
𝑓𝑛 (0, 𝑇1 , 𝑇2 ) = [−1 + √ ]∗𝑛 Equals to sum of all CF at time i times time-t price of ZC bond, maturity time i. Z here is also the
𝑍(0, 𝑇2 ) discount factor at time t.
𝑓𝑛 (0,0, 𝑇) ≡ 𝑟𝑛 (0, 𝑇) If there is a parallel shift in the continuously compounded yield curve, such that regardless of
Forward discount factor: maturity, rates change by the same amount: Δ𝑟(𝑡, 𝑇𝑖 ) = Δ𝑟 ∀𝑖 then
−𝑛(𝑇2 −𝑇1 ) 𝑛 𝑛
𝑓𝑛 (0, 𝑇1 , 𝑇2 ) 𝑍(0, 𝑇2 ) 𝐶𝐹𝑖 𝑍(𝑡, 𝑇𝑖 )
𝐹(0, 𝑇1 , 𝑇2 ) = (1 + ) = 𝐷 = ∑ 𝑤𝑖 (𝑇𝑖 − 𝑡) = ∑ (𝑇𝑖 − 𝑡)
𝑛 𝑍(0, 𝑇1 ) 𝑃
𝑖=1 𝑖=1
€6,48
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
linhnguyen5

Maak kennis met de verkoper

Seller avatar
linhnguyen5 Vrije Universiteit Amsterdam
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
4
Lid sinds
1 jaar
Aantal volgers
0
Documenten
1
Laatst verkocht
8 uur geleden

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen