100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary Statistics 1b chapter 6-9

Beoordeling
-
Verkocht
4
Pagina's
9
Geüpload op
06-02-2020
Geschreven in
2019/2020

This is a summary of the book Introduction to the practice of statistics. This book is used during the first year studying Psychology at the University of Groningen.










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Heel boek samengevat?
Nee
Wat is er van het boek samengevat?
H6, h7, h8, h9
Geüpload op
6 februari 2020
Aantal pagina's
9
Geschreven in
2019/2020
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Introduction to the practice of statistics
Chapter 6: Introduction to inference
Statistical inference draws conclusions about a population or process from sample data. It also
provides a statement of how much confidence we can place in our conclusions.

Types of statistical inference:

1. Confidence intervals: estimating the value of a population parameter.
2. Tests of significance: assess the evidence for a claim.

Formal inference emphasizes substantiating our conclusions via probability calculations.

Sampling distributions of statistic: what would happen if we used the inference method many times.

6.1: Estimating with confidence
The sample mean (x-gemiddeld) is the natural estimator of the unknown population mean (mu).

Unbiasedness of an estimator concerns the center of its sampling distribution, but questions about
variation are answered by looking at its spread.

Confidence interval= estimate +/- margin of error

Two important things about a confidence interval are common to all settings:

1. It is an interval of the form (a,b), where a and b are numbers computed from the sample
data.
2. It has a property called a confidence level that gives the probability of producing an interval
that contains the unknown parameter.

A level C confidence interval for a parameter is an interval computed from sample data by method
that has probability C of producing an interval containing the true value of the parameter.

Margin of error: m= z* x sd/wortel n

Confidence interval= x gemiddeld +/- m

Reducing a too large margin of error:

- Use a lower level of confidence (smaller C)
- Choose a larger sample size (larger n)
- Reduce standard deviation

Sample size for desired margin of error: n= (z* x sd/m)2

Z*: hoe kleiner C, hoe kleiner z*, hoe smaller het BHI.
Standaarddeviatie: hoe kleiner de standaarddeviatie, hoe smaller het BHI.
N: hoe groter n, hoe kleiner sd/wortel n, hoe smaller het BHI.

6.2: Tests of significance
Null hypothesis (H0): the statement being tested in a test of significance. The test of significance is
designed to assess the strength of the evidence against the null hypothesis.

- H0: there is no difference in the population means.
- H0: the difference in population means is zero.

, Alternative hypothesis (Ha): the statement we hope or suspect is true instead of H 0.

- Ha: the population means are not the same.
- Ha: the difference in population means is not zero.

H0 and Ha are parameters.

Test statistic: measures compatibility between the null hypothesis and the data.

Test statistic= estimate – hypothesized value
standard deviation of the estimate

P-value: the probability, assuming H0 is true, that the test statistic would take a value as extreme or
more extreme than that actually observed. The smaller the P-value, the stronger the evidence
against H0 provided by the data.

Significance level: when we choose alpha=0,05, we are requiring that the data give evidence against
H0 so strong that it would happen no more than 5% of the time when H 0 is true.

If the P-value is as small or smaller than alpha, we say that the data are statistically significant at level
alpha.

Four steps common to all tests of significance are as follows:

1. State the null hypothesis H0 and the alternative hypothesis Ha. The test is designed to assess
the strength of the evidence against H0; Ha is the statement that we will accept if the
evidence enables us to reject H0.
2. Calculate the value of the test statistic on which the test will be based. This statistic usually
measures how far the data are from H0. Z= (x gemiddeld – mu0)/(sigma/wortel n)
3. Find the P-value for the observed data. This is the probability, calculated assuming that H 0 is
true, that is the test statistic will weigh against H 0 at least as strongly as it does for these
data. Table A
4. State a conclusion. Choose a significance level alpha, how much evidence against H0 you
regard as decisive. If the P-value is less than or equal to alpha, you conclude that the
alternative hypothesis is true; if it is greater than alpha, you conclude that the data do not
provide sufficient evidence to reject the null hypothesis.

A two-sided test at significance level alpha can be carried out directly from a confidence interval with
confidence level C= 1 – alpha.

Critical value: a value z* with a specified area to its right under the standard Normal curve.

6.3: Use and abuse of tests
Ha is the research hypothesis asserting that some effect or difference is present. The null hypothesis
H0 says that there is no effect or no difference. A low P-value represents good evidence that the
research hypothesis is true.

When a null hypothesis can be rejected at the usual level alpha=0,05, there is good evidence that an
effect is present. That effect, however, can be extremely small. When large samples are available,
even tiny deviations from the null hypothesis will be statistically significant.

Statistical significance is not the same as practical significance. Statistical significance rarely tells us
about the importance of the experimental results.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
isabelvdb Rijksuniversiteit Groningen
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
569
Lid sinds
5 jaar
Aantal volgers
363
Documenten
0
Laatst verkocht
4 dagen geleden
Bachelor Psychologie & Master Klinische Psychologie RUG

Hoi! Aan de Rijksuniversiteit Groningen heb ik de Bachelor Psychologie (2019 t/m 2022) en de Master Klinische Psychologie (2022 t/m 2023) gevolgd. Tijdens mijn studie heb ik uitgebreide samenvattingen gemaakt van bijna alle boeken en colleges die je kan vinden op mijn profiel :) Momenteel ben ik werkzaam als psycholoog en doe ik veel psychodiagnostisch onderzoek, en voer ik behandelingen uit (vaak in combinatie met e-health). Daarnaast ben ik sinds oktober 2023 in opleiding tot GZ-psycholoog. Mocht je vragen hebben over de inhoud van een samenvatting, hoor ik het graag!

Lees meer Lees minder
4,2

46 beoordelingen

5
18
4
20
3
6
2
1
1
1

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen