100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Detailed summary of Evolution Computing Lecture notes + additional information

Beoordeling
-
Verkocht
-
Pagina's
235
Geüpload op
27-10-2024
Geschreven in
2024/2025

A detailed summary of Evolution Computing Lecture notes + additional information












Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
27 oktober 2024
Aantal pagina's
235
Geschreven in
2024/2025
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

🧑🏼‍🏫
Summary Slides
Chapter 0 - Evolutionary Problem Solving
The EC metaphor
Chapter 1 - Problems to be Solved
Black Box Model
Optimisation
Modelling
Simulation
Search Problems
Problem versus Problem-Solvers
Optimisation versus Constraint Satisfaction
NP Problems
Key Notions
Classes
Difference between Classes
Chapter 2 - The Origins
Motivation for EC
Darwinian Evolution
Survival of the Fittest
Diversity drives Change
Summary
Adaptive Landscape Metaphor
Genes and the Genome
Genetics
Homo Sapiens
Reproductive Cells
Crossing-over during Meiosis
Mutation
Development after Fertilisation
Genetic Code
Transcription, Translation
Important Points
Chapter 3: What is an EA?
Common Model of Evolutionary Processes
Two Pillars of Evolution
What is an EA?



Summary Slides 1

, Main EA Components
Representation
Evaluation / Fitness Function
Population
Selection
Survivor Selection
Variation Operators
Mutation
Recombination
Initialisation/Termination
Different Types of EAs
Solving the 8-queens problem
Problem
Representation
Fitness Evaluation
Mutation
Recombination
Parent Selection
Survivor Selection (Replacement)
EA Specification Tablea
Typical EA behaviour
Stages
Working of an EA demo
Progression of Fitness
Are long runs beneficial?
Is it worth expending effort on smart Initialisation?
EA in Context
EA as Problem Solvers
Goldberg View, 1989
EAs and Domain Knowledge
Michalewicz View, 1996
EC and Global Optimisation
EC and Neighbourhood Search
General Scheme of EAs
Version 1 versus Version 2
Important Points
Chapter 4: Representation, Mutation, Recombination
Role of Representation and Variation Operators
Two Sides of Representation
Representation (dis)continuity
Strong Causality Principle, Continuity, Locality
Good Representations



Summary Slides 2

, Binary Representation
Bit-Flip Mutation
1-point crossover
Alternative Crossover
n-point Crossover
Uniform Crossover
Crossover OR Mutation?
Integer Representation
Crossover
Mutation
Real-Valued or Floating-Point Representation
Mapping Real Values on Bit Strings
Uniform Mutation
Non-Uniform Mutation
Self-Adaptive Mutation
Uncorrelated Mutation with one σ 
Uncorrelated Mutation with n σ ’s
Correlated Mutations
Recombination
Single Arithmetic Crossover At Random
Single Arithmetic Crossover Mix Values
Whole Arithmetic Crossover
Blend Crossover
Overview different possible offspring
Multi-Parent Recombination
Multi-Parent Recombination: Type 1
Multi-Parent Recombination: Type 2
Permutation Representation
TSP Example
Representation
Mutation
Swap Mutation
Insert Mutation
Scramble Mutation
Inversion Mutation
Crossover
Order 1 Crossover
Partially Mapped Crossover (PMX)
Cycle Crossover
Edge Recombination
Tree Representation




Summary Slides 3

, Mutation
Recombination
Important Points
Chapter 5: Fitness, Selection, and Population Management
Population Management
Two different population management models exist:
Generation Gap
Fitness Based Competition
Fitness-Proportionate Selection (FPS)
FPS and Function Transposition
Parent Selection: Scaling
Windowing
Sigma Scaling
Rank-Based Selection
Linear Ranking
Exponential Ranking
Sampling Algorithms
Tournament Selection
Parent Selection: Uniform
Survivor Selection
Fitness-Based Survivor Selection
Elitism
Delete Worst
Round-Robin Tournament
(μ, λ)-selection (“comma strategy”)
(μ + λ)-selection (“plus strategy”)
Selection Pressure
Multimodality
Genetic Drift
Approaches for Preserving Diversity
Explicit Approaches for Preserving Diversity
Fitness Sharing
Fitness Sharing Example
Crowding
Crowding versus Fitness Sharing
Implicit Approaches for Preserving Diversity
Automatic Speciation
Island Model Parallel EAs
Cellular EAs
Different Spaces
Important Points




Summary Slides 4
€10,49
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
mchelleh

Maak kennis met de verkoper

Seller avatar
mchelleh Vrije Universiteit Amsterdam
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
0
Lid sinds
1 jaar
Aantal volgers
0
Documenten
9
Laatst verkocht
-

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen