100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Samenvatting Introduction to Computational Thinking - Minor BFW

Beoordeling
-
Verkocht
5
Pagina's
7
Geüpload op
28-01-2020
Geschreven in
2019/2020

Samenvatting voor het tentamen van de colleges van het minor vak 'Introduction to Computational Thinking'. Deze samenvatting is in het Engels. Tip: oefen ook veel. Oefententamen was representatief voor het tentamen.










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
28 januari 2020
Aantal pagina's
7
Geschreven in
2019/2020
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Aantekeningen colleges ICT
Mathematical fundamentals (ma 2-9)
Parameter = constant & make calculations more general, usually considered positive
Operations  + - / *
Opening parentheses:
Introducing parentheses (= factoring):
Parameter equation solving: | Factoring: | Solving quadratic equations:(check afterwards!)
| |
| |
| |
Multiple variables:  solve how one variable depends on the other  choose simplest option
 Substitution approach ----------------------->
 Elimination approach
------------------------------------------->

Function = formula describing how one quantity depends on other quantities (y = f(x) -> f(x) = x^2 )
 x = independent variable y = dependent variable
 Functions have a domain (x) = set of all possible input values & range (y) = set of all possible output values
 [ of ] = tot die waarde < of > = bij infinity
Limit (L): L is the limit of the function f(x) when f(x) approaches L in case x approaches a  lim
x→ ∞
f ( x ) =L

 Only defined when approached from either side is the same: lim
x ↑a
f ( x )=lim f ( x )=L
x ↓a
 Limits can be found by filling out x = a in f(x)
 Exceptions: limits at infinity and infinite ‘limits’ (vb. f(x) = b + 1 / x)
g (x)
Limits for rational functions (vb. f ( x )= )
h( x)'
 Divide by highest power in denominator
 Result depends on highest powers in nominator and denominator
 Highest power numerator = denominator  limit = constant
 Highest power numerator < denominator  limit = 0
 Highest power numerator > denominator  no limit (± ∞ )

Local slope (derivative)  differentiation = calculating deriv of a function
- ( f +g )' ( x )=f ' ( x ) + g' ( x )
- ( f −g )' ( x ) =f ' ( x )−g' ( x )
- ( Cf )' ( x )=C f ' ( x )
- Product rule: h ( x )=f ( x ) g ( x ) → h' ( x )=f ' ( x ) g ( x ) + f ( x ) g ' ( x )
- Chain rule: h ( x )=f ( g ( x ) ) =f ∙ g ( x ) →h' ( x )=f ' ( g ( x ) ) g '( x)
f (x ) g ( x ) f ' ( x ) −f ( x ) g ' (x)
- Quotient rule: h ( x )= → h' ( x )= 2
g ( x) (g ( x ))

Shapes of common functions:
o Parabolic (no asymp)
o Cubic (no asymp)
o Square root func
o Hyperbolic func
o Exponential growth(e a) / decay (e−a)
Plan to draw graphs:
I. Intersection points x-axis  solve y = f (x) = 0
II. Intersection points y-axis  fill in x = 0 in y = f (x)
III. lim f ( x )
Horizontal asymptotes  find limit x→ ±∞
p (x)
IV. Vertical asymptotes for rational functions  x values for which q (x) = 0 ?
q( x )
V. X values of maxima / minima  solve f ‘ (x) = 0
VI. Y values at maxima / minima  fill in x value(s) in f (x)
VII. Sketch all possible graphs

, Introduction to modeling (di 3-9)
Model = simplified abstraction of reality  focus on only certain aspects of study object
Types of models: Animal/disease Conceptual/verbal Cartoon Quantitative
Why quantitative models: increased precision/remove uncertainty | predicition (inter- & extrapolation) | possibility to
analyze (simulation, mathematics) | automated analysis | explain ‘complex’ system behaviour based on individual
components | integrative view on data acquired at different levels
Models based on observations cannot be proven correct (only in mathematical statements)
 Model falsification: bewijs waarom model incorrect is
 Model validation: verify predictions by experimentation  increase confidence in model
 Scope of model (beschrijft bepaald deel / specific circumstances)
Mechanistic models describe mechanism underlying observed behaviour  understanding
Descriptive/phenomenological models summarize data  powerful for prediction
Damped oscillations vs. persistent oscillations -------------------------------------------------------->
 Negative feedback can lead to oscillations
Modeling of pathway  include isoforms in model  compare model & experiment  knockout of isoforms  result


Differential equations I (di 3-9)
Cartoon network models:
 Based on verbal description | nodes: molecular species | arrows: molecular interactions (form, degr, regulation)
Mathematical network models:
 Remove uncertainty of model behaviour by becoming quantitive
 Modeling: Ordinary Differential Equations (ODEs)  describe dynamics | arrows = quantitative eaction rates
(State) variables: abundance of modeled molecular species | can vary over time
Parameters: values are fixed over studied time scale | characterizes environmental effects & interactions (vb. degr rate)
 In biology, parameters are positive
Reaction rates: predict changes over time
- Depends on: conc of reactants | environmental conditions (temp, pH)
If rate is known, reactions can be described as Ordinary Differential Equations (ODEs)
ODE assumptions: reaction rates are approximated:
I. Well-mixed environment  rates considered independent of position in space (but: spacial structure in cells)
II. Many molecules are present  continuous rather than discrete (but: some processes rely on only 1e 5 molecs)
Translation from cartoon network to a quantitative description (here: reactions)


------------------>


Law of mass-action:  reaction rate is proportional to the product of the concs of the reactants
 k, k1, k2, k3 = rate constants
k 0 A k1 da(t )
 =rate of change of [ A ] =k 0−k 1 a ( t )=rate of production−rate of decay
→ → dt
Cartoon to quantitative description: chemical reaction network  reaction rates  assumptions  ODE


Differential equations II (wo 4-9)
Analysis of ODEs: I. Analytical/symbolic solution II. Numerical simulationIII. Model analysis
Ak da
Analytical: =−ka a ( t )=D e−kt = exponential decay (D = initial conc)
→ dt
Numerical: in silico experi  how does system behave?
 Predict system behaviour over time for given conditions | use numerical simulations in software packages (vb. R)
da(t ) a ( t+ h )−a (t)
Approximation of solution: Euler’s method =f (a (t ) ) f ( a (t)) ≈ a ( t +h ) ≈ a ( t )+ hf ¿ )
dt h

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
bfw1620 Universiteit Leiden
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
49
Lid sinds
6 jaar
Aantal volgers
32
Documenten
1
Laatst verkocht
8 maanden geleden

4,5

4 beoordelingen

5
3
4
0
3
1
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen