100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
College aantekeningen

HSOM lecture 5

Beoordeling
-
Verkocht
-
Pagina's
5
Geüpload op
27-01-2020
Geschreven in
2018/2019

This is a summary of HSOM lecture 5.










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
27 januari 2020
Aantal pagina's
5
Geschreven in
2018/2019
Type
College aantekeningen
Docent(en)
Onbekend
Bevat
Alle colleges

Onderwerpen

Voorbeeld van de inhoud

Lecture 5
HSOM

Variability, uncertainty and flexibility

We are working with people, which means we cannot predict everything upfront like in a
factory. ED gets overcrowded. Waiting times are important in the ED, because it is
inconvenient and unhealthy. In order to understand it we need to know where it is coming
from.

Learning goals
- Distinguish between uncertainty and predictable variability and analyse the
consequences for process performance.
- Use queuing theory to analyse waiting time problems
- Explain the trade-off between variability, excess capacity and waiting times
- Analyse the role of flexibility and pooling in buffering
- Critically reflect on the role of human behavior in service systems

Uncertainty and predictable variability
- Variability refers to deviation from average conditions
- Variability comes in two flavours
o Predictable
o Unpredictable  uncertainty

ED – we know from the past and from data that it is more busy during Monday rather than a
Sunday. And we see that it is more busy during the afternoon than the morning. This is
called predictable variability. However, sometimes it is the case in which it happens that
morning/night is more busy than afternoon etc, this is called unpredictable variability.

Predictable variability
- Organisations understand predictable aspects of variability and respond in their
resource allocation
o Fewer doctors and nurses in ED during the times in which it is less busy
usually
- Sometimes called ‘synchronization’ (demand and supply in concert/in synch)
- Unpredictable variability = unsynchronized variability.

Sources of unpredictable variability
- Demand for service:
o Fluctuating patient arrival
o Fluctuating severity
- Provision of service:
o Service times (difference in working rhytm of staff, some work faster some
slower)
o Staffing (absenteeism etc)
- You can’t ensure predictability on the side of demand (patients etc), but also not on
the supply side (staff etc)

1

, Variability principle (aka queuing principle)
- Unsynchronized variability causes queuing and reduces throughput
- Reason: variability leads to occasional idle periods (less busy/empty), which are lost
to the system and cannot be offset or compensated by busy periods
- So can’t compensate for the fact that it is empty sometimes, dependent on the
patient to come, but cant make up for the empty times with busy times
- The more unpredictable variability, the worse it gets
- We wish to measure it, predict it…. But how?

 queuing theory – concerned with the mathematical analysis of processes with variation
in demand and service times. How we can measure and predict waiting times for certain
systems. “There is nothing so practical as a good theory”.

Queueing theory aka waiting time models




- Patient (customer) arrival pattern
- Patient (customer) decision:
o Entering the queue/leaving directly (so entering, seeing the queue and either
joining the queue or just leaving immediately)
o Enter the queue within conditions (showing up, and depending on the
conditions of the waiting time, 10 min or 1 hr or uncomfortably busy space,
one can decide to choose otherwise go to GP etc)
o Leaving the queue after some time (showing up, waiting and still deciding to
leave)

Waiting time model – service characteristics
- Service time distribution
- Number of servers (staff present)
- Queue capacity (waiting time area, limited seats etc)
- Queueing discipline (what is the type of order patients are being served)
o First come first served (FCFS)
o Last come first served (this is more about other things, like blood service etc)
o Different priorities (severity e.g.)

Waiting time model – notation (in Fitzsimmons)
A/B/X/Y/Z
- A = arrival distribution
- B = service distribution
- X = number of servers
- Y = system capacity
- Z = queueing discipline

2

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
jelena-k Erasmus Universiteit Rotterdam
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
67
Lid sinds
6 jaar
Aantal volgers
35
Documenten
82
Laatst verkocht
3 jaar geleden

2,9

18 beoordelingen

5
1
4
3
3
11
2
0
1
3

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen