100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
College aantekeningen

Lecture Note - TBCB - week 2

Beoordeling
-
Verkocht
-
Pagina's
38
Geüpload op
09-01-2020
Geschreven in
2018/2019

Lectures included: bioinformatics, genomic data analysis (class discovery), tumor metabolism, tumor-stroma interaction, tumor angiogenesis & hypoxia, glioma & angiogenesis, CT colonography, cancer dissemination, circulating tumor cells, MRD detection (hematological malignancy), liquid biopsy,

Meer zien Lees minder











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
9 januari 2020
Aantal pagina's
38
Geschreven in
2018/2019
Type
College aantekeningen
Docent(en)
Onbekend
Bevat
Alle colleges

Onderwerpen

Voorbeeld van de inhoud

Week 2: Tumor Biology and Clinical Behaviour

LECTURE 11: BIOINFORMATICS INTRO TO PRACTICAL WORK (D. Sie) Monday, 05/11/2018

Illumina sequencing workflow




Fragmenting DNA (100-500 bp fragments)  sonication (creating frayed DNA ends)  ligate adapters to each end of the A-
tailed DNA fragment  electropherogram interpretation  cluster generation  bridge formation  bridge amplification
(isothermal)  create millions dense cluster of single strand DNA in each channel of flow cells (primer still attached) 
sequencing (adding terminator & DNA polymerase)  base calling  sequencing by synthesis 

Paired end reads sequencing: require bridge amplification, followed by a flip of the template (for reads that’s too long to read
as a whole)

, Week 2: Tumor Biology and Clinical Behaviour

FASTQ file

1st line: specific cluster being analyzed in the flow cell

a. @Machine name_ f. Cluster X coordinate:
b. Run number_ g. Cluster Y coordinate#
c. Flow cell ID: h. Multiplex barcode/
d. Lane: i. Read number
e. Tile:
2nd line: sequence of 50 nucleotide (example  25-150 nt depending on the machine; limitation: relatively short reads)

3rd line:

a. Quality record indicator (+)
b. Description (a-i of first line)

4th line: ASCII representation of Phred score  probability of the base call being wrong

3 (B) to 40 (H)  B = 3 = 0.40, H = 40 = 0.000 1 (good result: dominant H)

Phred score: (see slide)  determines accuracy of the base called

FASTQC for quality control

%GC (G & C bases added in the sequence)

Plots:

 X-axis: cycle number (1-150 for example)

 Y-axis: Phred score (0-40)  good quality: most of the bases in the sequence are closer to 40 (top most area)

 Less quality data: bad sample

Other QC measurement:

 Top right: GC %age  blue: ideal/normal distribution (general representation of human samples), red: result from
experiment (exact composition of nucleotides in the reads)

 Bottom left: amplicon assay, analyzing each nucleotide (Y axis: GC%, X axis: …)  significant difference in percentage:
overrepresentation of certain sequence

 Bottom right: …

More likely to get the accurate data from smaller molecule, that’s why fragmentation is required

Data processing

1. Remove adapter sequence (not informative for the experiment) & primers
2. Trim low quality reads from the ends  low Phred score, …? (listen to recording)

Chopping off the adapter/low quality reads would somehow affect result, albeit not significantly

Mapping reads to the reference

, Week 2: Tumor Biology and Clinical Behaviour

Aim: find where their sequence occurs in the genome (map against reference genome sequence)  Burrows Wheeler
transform as data compression algorithm, allows for searching large genome & incorporation of many queries/reads in short
time

SAM file: sequence alignment map  contains info about how sequence reads map to a reference genome (used in all NGS
tools)

Format




CIGAR line (bottom box)  9M = 9 matches to the reference, NM: non-matching (wrong base when mapped against the
reference)

I = inserted, D = deleted, N = …

BAM: binary SAM/compressed SAM

CRAM: doesn’t store sequenced data  relies on reference

Grey bar: reads completing sequencing process  allow analysis of reads that don’t agree with the reference sequence (actual
error vs. artefact; events located in the actual read)

a. wrong base: A > T
b. polymorphisms
c. deletion: sequenced read don’t have certain genomes present in reference sequence
d. insertion: extra piece of nucleotide normally absent in reference sequence)

Events located not in the actual read  detect with PET …?

 Distance between 2 tags/ends should be fixed  longer/shorter distance: insertion/deletion

, Week 2: Tumor Biology and Clinical Behaviour

LECTURE 12: BIOINFORMATICS ANALYSIS & WORKFLOW (S.Abeln) Monday, 05/11/2018




Tumor sample  sequencing & data
processing 1 (finding
events/mutations/etc)  data processing
2 (which specific mutation is acting as
driving/passenger mutation)

Most of the mutations: passenger
mutations  driver mutation is more
fundamental for tumor biology studies,
thus it has to be determined; driver v.
passenger mutations need to be
distinguished by comparing to reference
sequence (external data source: other
cohort, genome reference, etc)

TUMORS: hyper-mutate!



a. NGS
Massive parallel sequencing  huge amount of reads, more cost effective;
disadvantage: fragmented sequence, difficult to determine the order
Computational solution:
1. Read mapping (against reference genome)
Input: sequenced fragments, reference genome sequence
Reference genome: based on multiple individuals, to allow variations being
examined/taken into account
Process: string matching of sequence  reference & sequenced organism need
to be closely related (same species)
Output: reference alignment/BAM  fluctuations in the alignment: variation
of individual’s sequence being read
Mismatches in alignment caused by: polymorphism (SNP – patient specific),
artefact/read mistake (1% frequency – high, more nucleotide involved =
higher chance of read mistake), actual mutation (tumor-specific)
Depth of coverage:
Depth = average number of reads per base (over the whole sequencing
sample)
Coverage = number of reads per base (specific region in sequence)
2. De novo assembly (advantage: need no reference sequence)
Input: millions of sequenced fragments
Process: cut reads in k-mers  string matching (to determine read overlap)
Output: alignment & sequence of a new strain
b. Single molecule sequencing

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
oddsters Vrije Universiteit Amsterdam
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
19
Lid sinds
5 jaar
Aantal volgers
11
Documenten
15
Laatst verkocht
1 maand geleden

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen