100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Samenvatting - Machine Learning for Econometrics (6414M0219Y)

Beoordeling
-
Verkocht
3
Pagina's
22
Geüpload op
27-09-2024
Geschreven in
2023/2024

Uitgebreide samenvatting van het vak Machine Learning for Econometrics.











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
27 september 2024
Aantal pagina's
22
Geschreven in
2023/2024
Type
Samenvatting

Voorbeeld van de inhoud

Statistical Learning Framework
We first take a look at an motivating example: support vector machine
Suppose we have
O
Target variable ine[-1 13 (hence takes value 1 or -1) :
,




s
Features (Xi Xid) : Xi =
.
. .
..




These can be drawn in the following figures

The blue dots denote Yi = 1




The orange dots denote Ye = -
1




What we do in the figure on the left is that we
r
+
Margin
draw different lines that seperate the points
*
What is the optimal choice of this separation line?
Y




This is done in the right figure, where we try to maximize the
We get a linear discriminant function: margin (= distance between first points and separation line,
f(x) wix (f(x)) signed distance)
=
+ wo
and a decision rule e(x) =

sign
&




In this example we get:
decision boundary [x wix : + wo = 0
,
ll wll =
13



S S
O >
((Xi) = 1 O
>
((Xi) =

y


decision rule wiXi the
boundary (wiXi the
le
boundary
=



+ wo
=
O
=

on or + wo
=
O on




O
<
((Xi) = 1 g > ((Xi) =
y




Now we look in general in this example
2 cases:
Hard margins: assume that the points are perfectly separable, maximizing gives hard margins
·

max M (w
s .
t .

same as
is .
min B Ai +
(BXi Bot
No
B: s .
t . 11 wll =1 S . . in +




gives (x + wo 03 =
gives Ex
x + 3= = : x +




equal to eachother

Soft margins: assume dots are not perfectly separated introduce that allows datapoints to violate the 3



constraint, go to otherside note gives hard margin version C >




min -eEi st .
in
xitBo is
violating margins



However this is hard to interpretate, hence we rewrite it such that we can understand
Note we can rewrite to [1 (BXi Bo) ob Ei Zi =
max -
Vi +
,




V

, min -emax[
Xi Bo) o -
Yi +
,




En

V
rewrite

min B ma [ -Yi (BXi Bo) o
+ , +
,




>
x = enc
as we only change the scale, the solution is the same
> o
,




We can rewrite the objective function again
↓B max E-YiBo) ob ABB th(b(Xi B Bo) Yi)
+
,
=
+ , . .




f(Xi B , . Bo)
y) (1 f(x) 03
Hinge loss function D
: In (f(x) ,
= max -



y
.


,




Candidate prediction rule f(x B Bo) 3x
D
= ,
= +
Bo

Hence we now have Regularization
~
mine
Bo) (b(Xi B , .
,
Yi) s .
A .

BB b


Empirical risk




Concluding from this derivation we define:
O
Empirical hinge loss (= average hinge loss) ↳ (b) = In (b(Xi B .
Bo) ,
Yi)

O
Population hinge loss (= expected hinge loss) ↳ (b) =
E (s(b) =
Eln(f(X B , .
Bo) ,
Y)




Until now we have only looked at linear function, now we look at the case, where we do not necessarily
need linearity
·
↳(b) In (b(X) Y) [0 Y &(x)] f(X)
:
,
=
max .
1 - .




note is not linear anymore
·
L (b) :
E[(s(1)] : ELIuCe(X) .
Y) : ElmaxSo .
1 . Y . f(x)


what is the optimal f(x) ?

(x) nigh(EYIX-)) =
e Bayes classifier
:
[. &




Hence the soft-margin SVM is directly estimating the Bayes classifier Minimizes the probability of
>
making classification mistakes
mis P[g(X)Y] =

mig Elo (g(X) .. ,
Y)
,




lo .,
(y y)
,
=
1
y y
= zero-one loss function

, We have now only looked at an example, now we will look at the general framework, where we can change
many things
The ideal prediction rule
We start again with
Target variable
8 I




Features
8
/



Before observing Y
Make prediction f(X) with some prediction rule f
>




After observing Y
We quantify the predictive loss l(b(X) Y)
>
Note & (b(X) Y) l(Y Y) . ,
= ,
=
0




The goal is to find the ideal prediction rule f that minimizes the population risk function (p(f) =
E l(f(x) Y)
.




>
Hence find &* such that L (f )
*
Lo (b)




Examples
O
When the loss function is the squared loss ((y y) 11y y ,
=
-




The optimal predictor is the regression function M(x) E[YIX
> = = x




O
When the loss function is the zero-one loss lo ( y) [ ..
,
:




The optimal predictor is the Bayes classifier (example) (BATES (x)
> =


argmax
P2Y Cm)X = = x




Empirical risk minimization
We start with an random sample S EYi Xi n] :
,
: i = 1, ...,




We define
empirical risk function L (b) n l(b(Xi) Yi)
& =
,




population risk function
C E-Ls(f)] E[l( (Xi) Yi) Lo (f) : :
& ,




Empirical risk minimizer angming (s(k) : : a




7
The idea is to approximate the population risk by the empirical risk La Ls
only in an appropriate subspace
,
I c F
and use the restricted estimator
,




>
How to choose this?
Choose I , such that n (f) :f) = ((t)1b 00] -
ef :
.




Equivalent to min Ls(f) d ((f) +
.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
maaikekoens Universiteit van Amsterdam
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
33
Lid sinds
4 jaar
Aantal volgers
0
Documenten
9
Laatst verkocht
4 weken geleden

4,5

2 beoordelingen

5
1
4
1
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen