100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Samenvatting - Stochastic Calculus (6414M0013Y)

Beoordeling
-
Verkocht
4
Pagina's
36
Geüpload op
27-09-2024
Geschreven in
2023/2024

Uitgebreide samenvatting van het vak Stochastic Calculus.












Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
27 september 2024
Aantal pagina's
36
Geschreven in
2023/2024
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Derivative pricing in discrete time
Definitions & notations
-
Derivative: financial product defined from another underlying asset
· S
: price of underlying stock
·
: price of derivative (call)
C



te [0 T] : time ,




payoff: b(Si) b(S 1c[o ])
-

or e+ =
b =
+
, ,+




We will look at 3 main approaches to determine the price Ct



Replication
I




Risk-neutral valuation
2




3
Deflator valuation
But we first exploit some useful theory

The binary one-period model
Br S+ (u)
erT P



Bank Bo
Stock So
this are the underlying assets
ert 1-
p

Br S + (d)



example Bo =
1
,
e =
1 .
1
,
So =
100 ,
U =
1 .
25
,
d =
0 .
&
,
p
= 0 .
8



1 .
1 125 =
Sou
X 1.1
XU




Bank ↑
Stock 100

xd
X 1 . 1



1 . 80 = God




For these underlying assets we can work backwards when we know the value at t = 1, using discount factor erT

e E (S ] ( p))
*T *

So = e (Sou +p +
=
+ Sod + -




N



How can we now price the derivative using these underlying assets, Co ?
f(5 )
We can first calculate the payoff of the derivative using the underlying asset C+ = +




C+ (u) = &(Sou) =
e




lo


e+ (d) =
b(Sod) =
red




example max[Sou-k o],
=
max
[125 -
100
,
03 =
25




Payoff European call option & (S ) +
= max[S +
-

k ,
03 &



take strike price K = 100 max [Sod-k 03
,
=
max 200 -
100
,
03 =
0

, As said before there are three methods to derive this , let's look at the first one Co


I
Replication: find a portfolio strategy investing in the stock and a risk-free asset that matches the derivative
price at each point
notation




3
Portfolio:
E 0 = (4 0 , .
- 1)

-1 derivative (sell one unit of derivative)
7


&
Price Po 8 =
4 Bo + $50 -
Co

M



shares in stocks
>
R


N




invested in bonds P (w) (w)
>

Payoffs +
.
0 =
4B + + 03 + -
er



Price vector Pa ( (a)
~
=
,
St ,




An arbitrage is a portfolio with either
i) (w)
A negative price and a non-negative payoff in both states : 0 .
Po o
,
0 .
P+ Lo



ii) (c) 20 PLA (n) o]
A non-positive price and a non-negative payoff, positive in at least one state : 0 .

PoEo ,
0 .
P
+
,
.
P
+
< > o




N




We rule out arbitrage opportunities and impose law of one price: a portfolio with payoff zero has price zero:

S
& S (u)


S (d)
yB

+B
&
+




+
e (u)


(d)
hence we can find 0 4
+ + =




and use these to solve
+
+
=
+




C+ So ↑Bo hence find
.




&o = + Co



note the risky position St hedges the payoff, so that Ve-0SA BE is risk-free again
- =
4




28at
=at
i
-



N
note u =
d =
=
e




We can rewrite this to explicit solutions:

E
en-ed
*
↓ Son 4 Bo
↑ Boe +
O =

(= hedge ratio
en
:
Son-Sod
edu-end
A
) Co =
050
en-ed
+



edu-end
"T rT

& Sod ↓Boe"
-




↓ Bo


+
+ =
ed =
e u -
d u -
d


(
u - eT

ed u - d
, ,


g1-q

This q is the risk-neutral probability,
this brings us to the second method
&



2
Risk-neutral valuation: construct a risk neutral probability measure Q under which the derivative price
equals the Q-expected discounted payoffs
e T(eu (1 g)) e z(e ]
Hence we find g
2 = + + ed + -
=
+




note we do not use the p probabilities as this is irrelevant for Co




We could also exploit this idea to a market with N assets and n states, the risk-neutral measure can be
uniquely determined if N = n




Complete market: any derivative with payoff depending on underlying assets can be replicated
>




Incomplete markets: no-arbitrage still may provide bounds on derivate prices, which price is realized
depends on market risk preferences
7
this happens when , hence more states then underlying assetsn2 N

, Binomial tree
The binary model is not rich enough in practice, we need more states and time periods, we introduce the
binomial tree: series of binary trees
T


example N = 2 T note stock prices are recombinant, Sc(nd) Sc(du), derivative price tree might be not
at = =




So un en (nu)
W W



Son & (u)
U U
d d


Stocks So So du (nd) (du)
U
Soud :

Call Co

d
U
en :
en

d


2
God C . (d)
At

d d

Sodd en(dd)




3
Using these binomial tree, we can calculate Co using backward pricing
step 1: calculate the payoffs at time N f (Sn- u) or &(Swd) :
,




step 2: using these payoffs and q, calculate en-1 e E [en /Sn ] et[ein /Si]
*
=
-1
In summary, li =




ere[en- /Sn-2]
r(N i) at
Ea[enISi]
-




step 3: repeat
-




&w - z =

or Ci = e




step 4: work backwards until Co




When we know all the derivative values, we also know all the hedging values
Miti (u) -
Citi (d) u(i +,
(d) -
dCi +
(u)


Di + 1
=
Sin-Sid Nit Bi ,
=
grat u -
d


This sequence (i + 1
,
Pi +
1) is a dynamic portfolio strategy with:
#




I




P




intermezzo: discrete-time martingales
definitions
·
probability space (r .
F ,
P)
>
probability measure I : gives probability to events in F ex. P(A) =
cp(i p)
-




collection of events A ex. F contains A End Y and A Sun da]
-field F : -l :

,
du =
,




sample space : set of all possible outcomes 7
ex. Enu dd] R wel 2 :
,
ud ,
du ,




random variable
X , assigns real numbers to outcomes
R : 1 >




R , random variable with extra dimension
stochastic variable : 2xT
~ >




example the variable Xt , takes 3 different values at t =
0 .
6



each corresponds to one sample path/trajectory W




Xe(w) is a collection of random variables, defined in one common probability space

, Y




the --field lists all events that might happen to X
F


7
we can define smaller O-fields Fr , collecting events that might have happened before n
>
filtration · [0 23 .
:
Fo F E .
. . .
[Fr ( : 5)

example 1 : Sunu ,
nud ,
udu ,
udd ,
dun ,
dud ,
du ,
Add 3

A: Eunu ,
und ,
uda ,
add 3 cr



F. : [0 ,
r ,
A , A ,
3]

In X" ((x3) [w X(w) Ye Fr( (B) (w X(w) BYE
·
measurability: = = = x
for continuous X = : = Fr


when this holds for all n, then Xr is adapted to the filtration Fr
&




I




ex. -fields Fr is the information set then the conditions 'X is G-measurable says 'the information set G I



S




contains X , and HEG is interpreted as 'all information in I is contained in G

important properties expected values
remember E(X) x(wi)p(wi) E(X1B) = X(wi) P(wilB) :
·




for finite field GEF E(XIG) (w) E(X/aw) An MStieg
· -
: = =
: we Ail

·
E(X1g) : X
if X is G-measurable
· E(X 150) : E(X)

·
E(XY(g) =

XE(y(g) if X
is G-measurable
·
EZE(Xig)] :
E(X)

5
E[E(X(g)(2] :
E(X (2) 288 = 5
(tower property)
>

ex. ELE(XIFn)IFn] E(XIFn) En E(X(fn) E(XIXo Xn)
if is generated by X, then
:


,
=
,
X , .
. .
.,




martingales
Xn
is a martingale with respect to In and I if: A stochastic process is said to have the


]
Xr
is adapted to In each Xn is measurable with respect to ,
= martingale property if, at any given time, the
expected value of the future values of the
-EP((Xn)) < process, conditional on the information
available up to the present time, is equal to
3E(Xn + 1 15n) : Xn
the current value.
example E(Xn + 1
15n) =
ELE(X1fn 1) (5n] +
:
E[X1Fn] :
Xn




martingale transform
when Xn is a (P Fn) -martingale, and .
on
is previsable ( On is Fn-measurable) . then In = 20 + "Pin (Xin -Xi) is also a
(P Fr) martingale
.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
maaikekoens Universiteit van Amsterdam
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
33
Lid sinds
4 jaar
Aantal volgers
0
Documenten
9
Laatst verkocht
4 weken geleden

4,5

2 beoordelingen

5
1
4
1
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen