100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Samenvatting - Financial Mathematics for Insurance (6414M0309Y)

Beoordeling
5,0
(1)
Verkocht
9
Pagina's
29
Geüpload op
27-09-2024
Geschreven in
2023/2024

Extensive summary of the course Financial Mathematics for Insurance.











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
27 september 2024
Aantal pagina's
29
Geschreven in
2023/2024
Type
Samenvatting

Voorbeeld van de inhoud

Cash flow: the movement of money in our out of an investment or bank
notation (xo
> xn) ,
x , . .
.,




Present value: determine the current wordt of a sum of money that is to received or paid in the future, accounting
(future value) FV

for the time value of money r)u >
PV (1 +
=


(present value) (interest rate)
: (1 + r)3
N

N




:
: ( + r)
X
X3


PV (xo ,
X, , . . .
.,
Xn) PV
~
XS
: (1 + r)2X2

V




: (1 + r)"




Compounding
>
interest depends on the period, we could have yearly interest, monthly interest etc.
when we want to have yearly interest rate, but we only get the interest rate per 6 months, we need
7




to tak compounding into account
ex. interest rate per 6 months = % 2




we have investment of E 1000
,
-




then after a year we have 1000 x 1 ,
02 = E1020 1020 + 1 , 02 =
E1040 ,
4




E1040
instead of 2 2 %: n 1000 + 1 , 04 =




&
O
m = number of payments a year r (1 )m note if , then (1 (m 1 + = + m d +

r


O
= interest paid per period
M
ex. : 2 %: 0 .
02

2


G r
S




= yearly interest rate r (1 02) 1 + =
+ 0 .
=
1 .
0404




r' =
0 . 040h




When we have cash flows, we have two options, put it on the bank or invest it
-


I 2



Ideal bank: swaps cashflow streams if Internal rate of return: the rate at which the initial investment
they have same PV equals the present value of future cash flows (makes the PV of
has interest rate
7
VIDEAL cash flows equal to zero), defines attractiveness of investment
0( *) + c
=
xo + +
...
+




Choosing between cash flow stream (Xo Xn) (yo y yn) ,
X ,
, . .
..
and ,
.
.
. .
..



I
2 *


Choose the one with largest PV, as bank Choose the one that has largest IRR rus ry



makes them equivalent with
(PVy ,
0
, ....
0) and (PV .
0 , ...,
0



Which one to choose or I 2


*
·
r
put money in investment
I VIDEAL




put money on bank
*
6
VIDEAL > r

,Problem: may lead to conflicting conclusions because the horizons is different (number or time points)
Ex. Cash flows IRR Ideal Bank uncertainty in time horizons D



"px
Xn)
M


(xo
M #

rx
M
,
X, .
. .
., . . .




N




"Pre
(yo ,
y .
. . .
., yn) ↑ ↑4949
*


ry . . . .




V V




As we see here, the horizons are different
To solve this the cashflow X can choose to again invest or put it in the bank
A type of investment
I

Bond market &




P = price of the bond C + F



"
F = face value, value of the bond O M




C = coupon, intermediate payments P




(kind of interest rate) V




What is a fair price of a bond? note yield = IRR of bond X =




k
r)
engin
-




P = F( , + +
used to compare bonds, tells us how interesting a bond is
7




=
F(1 + r( + C 1 -
( + r)" -
1
Bonds which are comparable should have comparable yields

·
There is a trade off between P and ↓
7
When we have two bonds (x and y), with r % =
2 and
*

ry = 3 %
, everyone wants to have bond y, so to adjust for
this we give bond x a higher price than bond y.

We need to be compensated when the probability that a cash flow is going to be paid is low
>
look at yield spreads which contains information about the financial health of a company

What investments risks are there when holding bonds?
Let's suppose, I am an insurer and I have a bond. At a certain time period, I get paid out a coupon, using this
coupon I can payout claims. However when the value of the coupon is larger than the amount that I need to
payout, I need to reinvest this difference again. Or the other way around, when I need to pay more than
the amount of coupon I received, I need to sell the bond.
However, yields change over time, which bring different risk:
>




Interest rate risk: bond value decreases, due to yield change
D




Reinvestment rate: coupons reinvested again against worse yield
&

, 8
Inflation risk: cash flows need to be higher to compensate
g
Liquidity risk: a bond is hard to sell or buy

We need to find a portfolio that minimizes these risks, we do this by analyzing how bonds react to market changes P

7
We analyse the effect of changes in yield on changes in bond prices AP



By
7
How sensitive is bond to yield changes, how sensitive priceto yield changes &



As pax e C 2 + F



We calculate P (1
It +... m
"
=
+ m

-P -
C



C+"... y
2x =



2pYax I
I
AP
>
· ... P p
--
DmAd

>
Macaulay duration
Modified duration Di




Ex. D =
90 X =
7 % Dm =
5
years

Now AJ = -
0 5 .
% from 7% to 6
.
5 % ), what is the new price?
P -Dm P Ax 90
Duration is a measure of the average time it takes for an investor to recover the
5 2 25
= =
005
.


-0
.
- . -
=
.
.


bond's price through its future cash flows, including both coupon payments and the
return of principal at maturity.
Hence new price is 92 25 .




Modified duration is a measure of the sensitivity of a bond's price to changes in
interest rates.


If I can control how a certain bond reacts to a change in yield. Then if I make a portfolio of bonds, I take many
bonds at the same time. They will all react to a change in yield, but then I can also calculate how my portfolio as a
total reacts to a change in yield. Then I can do some risk management, and try to ensure that the reaction is more
or less what I want it to be.
Create an bond portfolio which has

g Same PV as liabilities (enough value now in portfolio to pay liabilities)
Same (modified) duration as liabilities DBOND DLiabilities :
(PVBOND = PVAbilities)


>
I do not care about changes in cash flows if liabilities change in the same amount (as for example the
coupon prices go down, I do not care if I also have to pay less claims) immunization >



>
Invest in bonds with price and duration , such that
Di Pi


PVnAbilities =
a, P , + azPz +... + an PN = PUBOND
,
a P D, , + azPcDc +... + awPNDN

>
DLABILITIES =
,
a

P, D ,
P , + azP2 +... + an

PrDz
Po : DBOND
PrDN
Find di
, which determines the portfolio
= al PULIABILITIES
+
@2 PVLABILITIES +... + An PULABILITIES : DBOND

7
Results in portfolio which protects the risks in the liabilities against changes in yield

Risk is minimized because of immunization

Beoordelingen van geverifieerde kopers

Alle reviews worden weergegeven
10 maanden geleden

5,0

1 beoordelingen

5
1
4
0
3
0
2
0
1
0
Betrouwbare reviews op Stuvia

Alle beoordelingen zijn geschreven door echte Stuvia-gebruikers na geverifieerde aankopen.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
maaikekoens Universiteit van Amsterdam
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
33
Lid sinds
4 jaar
Aantal volgers
0
Documenten
9
Laatst verkocht
4 weken geleden

4,5

2 beoordelingen

5
1
4
1
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen