5 − (2 × 42 − 8 + 2 × 6) 23 × 22 = 23+2 = 25
1. Haakjes = 5 − (2 × 16 − 8 + 2 × 6) - 𝑎𝑝 × 𝑎𝑞 = 𝑎𝑝+𝑞
2. Machten en wortels = 5 − (32 − 8 + 12) Voorbeeld 2
3. Vermenigvuldigen en delen = 5 − (36) 𝑎𝑝
= 𝑎𝑝−𝑞 25
-
𝑎𝑞
= 25−2 = 23
4. Optellen en aftrekken = −31 22
- (𝑎𝑝 )𝑞 = 𝑎𝑝×𝑞 Voorbeeld 3
Haakjes wegwerken Voorbeeld 1 (23 )2 = 23×2 = 26
0
- 𝑎 =1
3𝑥(2 + 3𝑥) = 6𝑥 + 9𝑥 2
Voorbeeld 4
- 𝐴(𝑥 + 𝑦) = 𝐴𝑥 + 𝐴𝑦 1
Voorbeeld 2 - 𝑎−𝑝 = 70 = 1
𝑎𝑝
- (𝐴 + 𝐵)(𝑥 + 𝑦) = 𝐴𝑥 + 𝐴𝑦 + 𝐵𝑥 + 𝐵𝑦 (3 + 𝑥)(2 − 𝑥) = 3 × 2 − 3𝑥 + 2𝑥 − 𝑥 2 = 6 − 𝑥 − 𝑥 2
- (𝑎𝑏)𝑝 = 𝑎𝑝 𝑏 𝑝 Voorbeeld 5
1 3 1 3×1 3
Voorbeeld 3 3 × 2−𝑥 = 3 × = × = =
2𝑥 1 2𝑥 1×2𝑥 2𝑥
(1 + 𝑥) 2 = (1 + 𝑥)(1 + 𝑥) = 1 + 2𝑥 + 𝑥 2
Voorbeeld 6
(5𝑥)2 = 52 ⋅ 𝑥 2
Breuken optellen Voorbeeld 1
1 1 1×5 4×1 5 4 9
+ = + = + =
1 1 1×𝐵 𝐴×1 𝐵+𝐴 4 5 4×5 4×5 20 20 20
- + = + = Machten en wortels
𝐴 𝐵 𝐴×𝐵 𝐴 ×𝐵 𝐴𝐵
Voorbeeld 2 1
1 1 𝐴 1+𝐴 1 1 4 5 𝑞 met 𝑎 > 0
- +1 = + = +1= + = - √𝑎 = 𝑎𝑞
𝐴 𝐴 𝐴 𝐴 4 4 4 4
- √𝑎𝑏 = √𝑎√𝑏 met 𝑎 ≥ 0 en 𝑏 ≥ 0
𝐶 𝐷 𝐶×𝐵 𝐴×𝐷 𝐶𝐵+𝐴𝐷 Voorbeeld 3
- 𝐴
+ 𝐵 = 𝐴×𝐵 + 𝐴×𝐵 = 𝐴𝐵 2 3 2×6 5×3 12 15 27
5
+ 6 = 5×6 + 5×6 = 30 + 30 = 30 𝑎 √𝑎 met 𝑎 ≥ 0 en 𝑏 > 0
- √𝑏 = √𝑏
- √𝑎 + 𝑏 met 𝑎 + 𝑏 ≥ 0
Breuken vermenigvuldigen Voorbeeld 1
1 5 1 5×1 5
5 × 4 = 1 × 4 = 1×4 = 4
-
𝐵
𝐴 ×𝐶 =1×𝐶 =
𝐴 𝐵 𝐴×𝐵 Wortelvergelijkingen Voorbeeld
𝐶
Voorbeeld 2 √𝑥 + 2 = 𝑥
𝐴 𝐵 𝐴×𝐵 2 3 2×3 6 1 1. Isoleer de wortel
- × 𝐶 = 𝐷×𝐶 × 6 = 5×6 = 30 = 5 2. Kwadrateer beide kanten
𝐷 5 1. √𝑥 = 𝑥 − 2
3. Los op 2. 𝑥 = (𝑥 − 2)2 = 𝑥 2 − 4𝑥 + 4
4. Controleer op oplossingen die niet voldoen 3. 0 = 𝑥 2 − 5𝑥 + 4
Breuken delen → delen door een breuk is vermenigvuldigen met het omgekeerde 0 = (𝑥 − 1)(𝑥 − 4)
𝑥 = 1∨𝑥 = 4
𝐴 𝐶 𝐴 𝐶 𝐴×𝐶
- 𝐵 =𝐴 ×𝐵=1×𝐵= Voorbeeld 4. 𝑥 = 1 voldoet niet!
(𝐶) 𝐵 5 4 5 4 5×4 20
1 = 5 × 1 = 1 × 1 = 1×1 = 1 = 20
(4)
Oplossen van vergelijkingen Voorbeeld
2
8 + 𝑥 = 16 + 3 𝑥
Breuken vereenvoudigen Voorbeeld 1. Werk zoveel mogelijk breuken en haakjes weg
12 3×4 4
= = 2. De onbekende naar links, de getallen naar rechts 2
-
𝐴×𝐵
=
𝐵 15 3×5 5 2. 𝑥 − 3 𝑥 = 16 − 8
𝐴×𝐶 𝐶
3. Uitrekenen wat je overhoudt
1
4. Delen door het getal dat voor de onbekende staat 3. 𝑥=8
3
8
4. 𝑥= 1 = 8 × 3 = 24
3
Algemene vormen van vergelijkingen
- 𝐴×𝐵 = 0 Dan 𝐴 = 0 ∨ 𝐵 = 0
𝐴
- =0 Dan 𝐴 = 0 en 𝐵 ≠ 0
𝐵
- 𝐴×𝐵 = 𝐴 ×𝐶 Dan 𝐴 = 0 ∨ 𝐵 = 𝐶
𝐴
- =𝐶 Dan 𝐴 = 𝐵 × 𝐶 en 𝐵 ≠ 0
𝐵
- 𝐴2 = 𝐵2 Dan 𝐴 = 𝐵 ∨ 𝐴 = −𝐵
𝐴 𝐶
- =𝐷 Dan 𝐴 × 𝐷 = 𝐵 × 𝐶
𝐵
,Substitueren → vervangen van een getal of uitdrukking Machtsfuncties
- 𝑇 = 7𝑉 + 4 − 5𝑊 Substitueren geeft Functies van de vorm 𝑓(𝑥) = 𝑥 𝑛 met 𝑛 een geheel getal
met 𝑉 = 2 en 𝑊 = 3 𝑇 = 7×2+4−5×3 = 3
- 𝑂𝑚𝑧𝑒𝑡 = 𝑝𝑟𝑖𝑗𝑠 × ℎ𝑜𝑒𝑣𝑒𝑒𝑙ℎ𝑒𝑖𝑑 = 𝑝 × 𝑞 Substitueren geeft
met 𝑞 = −2𝑝 + 10 𝑂𝑚𝑧𝑒𝑡 = 𝑝 × (−2𝑝 + 10) = −2𝑝2 + 10𝑝
Formules optellen en aftrekken Voorbeeld
Gegeven zijn de formules −6𝑥 + 3𝑦1 = 36 en 24𝑥 + 3𝑦2 = 15
1. Maak de juiste variabelen vrij Bereken het verschil 𝑦1 − 𝑦2
2. Bereken de som of het verschil door te substitueren
→ maak gebruik van haakjes 1. −6𝑥 + 3𝑦1 = 36 24𝑥 + 3𝑦2 = 15
3𝑦1 = 36 + 6𝑥 3𝑦2 = 15 − 24𝑥
𝑦1 = 12 + 2𝑥 𝑦2 = 5 − 8𝑥
2. 𝑦1 − 𝑦2 = (12 + 2𝑥) − (5 − 8𝑥) = 10𝑥 + 7
Functies
- Tweedegraads functies 𝑓(𝑥) = 𝑎𝑥 2 + 𝑏𝑥 + 𝑐 Met 𝑎 ≠ 0
(kwadratische functies)
- Hogeremachts functies 𝑔(𝑥) = 𝑎𝑥 2 + 𝑏𝑥 2 + 𝑐𝑥 + 𝑑 Met 𝑎 ≠ 0
𝑎
- Gebroken functie 𝑏(𝑥) = 𝑎𝑥 −1 = 𝑥 Met 𝑥 ≠ 0
Functies van de vorm 𝑓(𝑥) = 𝑎𝑥 𝑛 + 𝑏 met 𝑎 > 0
1
- Wortelfuncties 𝑤(𝑥) = √𝑎𝑥 = (𝑎𝑥) 2
Met 𝑎𝑥 ≥ 0
Eigenschappen
𝑡
𝑛 even 𝑛 oneven
- Exponentiële functies 𝐸(𝑡) = 𝑏 ⋅ 𝑔 Met 𝑔 > 0 en 𝑔 ≠ 1 𝑛>1 Domein: alle waarden voor 𝑥 Domein: alle waarden voor 𝑥
𝑓(𝑥) = 𝑎𝑥 𝑛 + 𝑏 Bereik: 𝑦 ≥ 𝑏 Bereik: alle waarden voor 𝑦
- Logaritmische functies 𝐿(𝑥) = 𝑔log(𝑥) Met 𝑥 > 0 𝑛 ≤ −1 Domein: alle waarden voor 𝑥 ≠ 0 Domein: alle waarden voor 𝑥 ≠ 0
𝑎
𝑓(𝑥) = 𝑎𝑥 −1 + 𝑏 = + 𝑏 Bereik: 𝑦 > 𝑏 Bereik: alle waarden voor 𝑦 ≠ 𝑏
𝑥
Asymptoot: verticaal 𝑥 = 0 Asymptoot: verticaal 𝑥 = 0
Begrippen horizontaal 𝑦 = 𝑏 horizontaal 𝑦 = 𝑏
- Domein: alle waarden die ingevuld mogen worden voor 𝑥
- Bereik: alle waarden die uit de formule kunnen komen voor 𝑦
Wortelfuncties
- Asymptoot: een lijn waar de grafiek steeds dichterbij komt
Functies van de vorm 𝑓(𝑥) = √𝑎𝑥 + 𝑏 + 𝑐 met 𝑎𝑥 + 𝑏 ≥ 0
- De grafiek zal de asymptoot nooit raken of snijden
- Horizontale asymptoot: 𝑦 = ⋯
- Verticale asymptoot: 𝑥 = ⋯
Eigenschappen
Tweedegraads functie Voorbeeld 𝑏
- Domein: 𝑎𝑥 + 𝑏 ≥ 0 → 𝑥 ≥ − 𝑎
𝑓(𝑥) = 𝑎𝑥 2 + 𝑏𝑥 + 𝑐 met 𝑎 ≠ 0 𝑥 -2 -1 0 1 2 3 4 - Bereik: 𝑦≥𝑐
𝑓(𝑥) 4 1 0 1 4 9 16
Eigenschappen Verschil -3 -1 1 3 5 7
- Domein: alle waarden voor 𝑥 opeenvolgende
- Bereik: bereken hiervoor de top 𝑦-waarden
- Asymptoot: de lijn waar de grafiek dichtbij komt Verschil 2 2 2 2 2
- Symmetrie: de functie heeft een symmetrie-as door de top opeenvolgende
verschillen
,Exponentiële functies Lineaire formule → 𝑦 = 𝑎𝑥 + 𝑏 Voorbeeld
Functies van de vorm 𝐸(𝑡) = 𝑏 ⋅ 𝑔𝑡 met 𝑏 ≠ 0, 𝑔 > 0 en 𝑔 ≠ 1 1. Schrijf de lineaire formule 𝑦 = 𝑎𝑥 + 𝑏 op
2. Bepaal twee punten (𝑥1 , 𝑦1 ) en (𝑥2 , 𝑦2 )
Δ𝑦 𝑦 −𝑦
3. Bereken 𝑎 met 𝑎 = = 2 1
Δ𝑥 𝑥2−𝑥1
4. Bereken 𝑏 door een punt in te vullen
5. Schrijf de formule in zijn geheel op
1. 𝑦 = 𝑎𝑥 + 𝑏
1 1
2. (𝑥1 , 𝑦1 ) = (−1, 7 ) (𝑥2 , 𝑦2 ) = (3, 1 )
Eigenschappen 2
1 1
2
Δ𝑦 𝑦 −𝑦 12−72 −6 1
- Domein: alle waarden voor 𝑥 3. 𝑎 = Δ𝑥 = 𝑥2−𝑥1 = = = −1 2
3−−1 4
- Bereik: 𝑦 > 0 als 𝑏 positief 2 1
1 1
𝑦 < 0 als 𝑏 negatief 4. (𝑥1 , 𝑦1 ) invullen geeft 7 = −1 ⋅ −1 + 𝑏 → 𝑏 = 6
2 2
1
- Asymptoot: de horizontale lijn 𝑦 = 0 5. 𝑦 = −1 𝑥 + 6
2
Voorbeeld
Exponentiële formule → 𝐸 = 𝑏 ⋅ 𝑔𝑡 Voorbeeld
𝑡 0 1 2 3 4
𝐸(𝑡) 400 712 1270 2260 4020 1. Schrijf de exponentiële formule 𝐸 = 𝑏 ⋅ 𝑔 op 𝑡
2. Bepaal twee punten (𝑥1 , 𝑦1 ) en (𝑥2 , 𝑦2 )
𝐸(𝑡+1) 𝑛𝑖𝑒𝑢𝑤
Groeifactor 𝑔 bereken je door = 3. Bepaal de groeifactor 𝑔 per juiste stap
𝐸(𝑡) 𝑜𝑢𝑑
𝐸(1) 712 𝐸(2) 1270 𝐸(3) 2260 4. Bereken begingetal 𝑏 door een punt in te vullen
Hieruit volgt: 𝑔 = 𝐸(0) = 400 ≈ 1,78 𝑔 = 𝐸(1) = ≈ 1,78 𝑔 = 𝐸(4) = 1270 ≈ 1,78
712 5. Schrijf de formule in zijn geheel op
De groeifactor kun je op twee manieren bepalen, met
Logaritmische functies 1. Een tabel of twee punten:
𝑛𝑖𝑒𝑢𝑤
𝑔 = 𝑜𝑢𝑑
𝑔𝑟𝑜𝑒𝑖𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒
Functie van de vorm 𝐿(𝑥) = 𝑔log(𝑥) 2. De groeipercentage: 𝑔 =1+
100
Bepaal altijd de groeifactor per 1 tijdseenheid. Om van 𝑘
1
tijdseenheden naar 1 tijdseenheid te gaan, neem je 𝑔𝑘 .
Stijgende lijn als 𝑔 > 1
Dalende lijn als 0 < 𝑔 < 1
Beiden gaan door het punt (1,0) 1. 𝐸 = 𝑏 ⋅ 𝑔𝑡
2. (𝑥1 , 𝑦1 ) = (1,4) (𝑥2 , 𝑦2 ) = (3,1)
Eigenschappen 𝑛𝑖𝑒𝑢𝑤 1
3. Groeifactor 𝑔 per 2 tijdseenheden: 𝑔 = 𝑜𝑢𝑑 = 4
- Domein: 𝑥>0 1
1 2 1
- Bereik: alle waarden voor 𝑦 Groeifactor 𝑔 per 1 tijdseenheid: 𝑔=( ) =
4 2
- Asymptoot: verticale lijn 𝑥 = 0 1 1
4. (𝑥1 , 𝑦1 ) invullen geeft 4 = 𝑏 ⋅ ( ) → 𝑏 = 8
2
1 𝑡
5. 𝐸 = 8 ⋅ (2)
, Translatie → verschuiven Snijpunten van twee grafieken → oplossen van de vergelijking 𝑦1 = 𝑦2
Los op → Maak gebruik van je GR en optie Intersect.
Algebraïsch → Zonder rekenmachine tot de laatste stap
Exact → Helemaal zonder rekenmachine. Laat wortels, logaritmes e.d. staan en rond niet af.
Horizontaal verschuiven
Naar rechts: 𝑦 = 𝑓(𝑥 − 𝑎) Ontbinden in factoren
Naar links: 𝑦 = 𝑓(𝑥 + 𝑎)
Buiten haakjes halen: 𝑥 2 − 6𝑥 = 0 → 𝑥(𝑥 − 6) = 0
Product-som methode: 𝑥 2 − 9𝑥 + 8 = 0 → (𝑥 − 1)(𝑥 − 8) = 0
ABC formule
Functie van de vorm 𝑎𝑥 2 + 𝑏𝑥 + 𝑐 met 𝑎 ≠ 0
Verticaal verschuiven
1. Bepaal de discriminant 𝐷 = 𝑏 2 − 4 ⋅ 𝑎 ⋅ 𝑐
−𝑏±√𝐷
Naar boven: 𝑦 = 𝑓(𝑥) + 𝑐 2. Bepaal 𝑥 = 2⋅𝑎
Naar beneden: 𝑦 = 𝑓(𝑥) − 𝑐
Het aantal oplossingen
- 𝐷<0 Geen oplossingen (want negatieve wortel bestaat niet)
- 𝐷=0 1 oplossing
- 𝐷>0 2 oplossingen
Rekken Exponentiële vergelijking Voorbeeld 1
2𝑥 = 8
1. Herschrijf naar de vorm 𝑥
𝑎 =𝑏 𝑥 = 2log(8) = 3
2. Los op 𝑥 = 𝑎log(𝑏)
Voorbeeld 2
Als er staat ‘los exact op’ dan is 𝑥 = 𝑎log(𝑏) het antwoord. 2𝑥 = 9
𝑥 = 2log(9)
𝑎 log(𝑏)
Vermenigvuldigen t.o.v. de 𝑥-as met 𝑎: 𝑦 = 𝑎 ⋅ 𝑓(𝑥) log(𝑏) is gelijk aan log(𝑎)
Voorbeeld 3
50 + 5 ⋅ 22𝑥−2 = 100
5 ⋅ 22𝑥−2 = 50
22𝑥−2 = 10
22𝑥 ⋅ 2−2 = 10
22𝑥 = 40
(22 ) 𝑥 = 40
4𝑥 = 40
𝑥 = 4log(40)
Rekenregels voor logaritmes Voorbeeld 1
1 2
Vermenigvuldigen t.o.v. de 𝑦-as met 𝑎: 𝑦 = 𝑓 (𝑎 ⋅ 𝑥) log(8) + 2log(4) = 2log(8 ⋅ 4) = 2log(32)
𝑔 𝑔 𝑔
- log(𝑎) + log(𝑏) = log(𝑎 ⋅ 𝑏)
Voorbeeld 2
𝑔 𝑎 8
- log(𝑎) − 𝑔log(𝑏) = 𝑔log (𝑏 ) 2
log(8) − 2log(4) = 2log (4) = 2log(2)
- 𝑛 ⋅ 𝑔log(𝑎) = 𝑔log(𝑎𝑛 ) Voorbeeld 3
3 ⋅ 2log(8) = 2log(83 )
𝑝
𝑔 log(𝑎)
Spiegelen → Vermenigvuldigen t.o.v de 𝑥-as met een 𝑎 < 0 - log(𝑎) = 𝑝
Voorbeeld 4
log(𝑔)
2log(64)
4
log(64) = 2log(4)