100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Samenvatting Moderne Wiskunde 11e ed. 5VWO WisB Hoofdstuk 1 t/m 9

Beoordeling
3,0
(1)
Verkocht
2
Pagina's
9
Geüpload op
09-12-2019
Geschreven in
2017/2018

Samenvatting van alle hoofdstukken van Wiskunde B 5Vwo, gemiddeld 1 A4'tje per hoofdstuk. Moderne Wiskunde elfde editie 5Vwo wiskunde B Hoofdstuk 1 t/m 9 (hoofdstuk 9: Keuzeonderwerp Matrices)










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Middelbare school
School jaar
5

Documentinformatie

Heel boek samengevat?
Ja
Geüpload op
9 december 2019
Aantal pagina's
9
Geschreven in
2017/2018
Type
Samenvatting

Voorbeeld van de inhoud

WISKUNDE B – 5V – HOOFDSTUK 1 LOGARITMISCHE FUNCTIES


Voorkennis
Grafieken van exponentiële functies (𝑓(𝑥) = 𝑏 ∙ 𝑔 𝑥 ) snijden de y-as in het punt (0,b). Bij g > 0 is de grafiek
stijgend, en bij 0 < g < 1 dalend ( bij b > 0). Het domein van deze functies is ℝ, en het bereik is < 0, →>.
𝑔𝑝
De regels bij exponenten en machten zijn: 𝑔𝑝 ∙ 𝑔𝑞 = 𝑔𝑝+𝑞 , 𝑔𝑞 = 𝑔𝑝−𝑞 en (𝑔𝑝 )𝑞 = 𝑔𝑝 ∙𝑞
.

§1-1 Logaritmen
In de vergelijking 𝑔 𝑥 = 𝑎, is x de logaritme van a voor het grondtal g: 𝑥 = log 𝑔 (𝑎). Een logaritme kun je zeggen
als: “Tot welke macht moet je g doen, totdat je a als uitkomst krijgt. Het getal binnen de haakjes (a) moet altijd
groter dan 0 zijn, want log(𝑛𝑒𝑔𝑎𝑡𝑖𝑒𝑓 𝑜𝑓 0) kan niet. Ook geldt altijd log 𝑔 (1) = 0.

§1-2 Logaritmen berekenen
De “normale” log, is de 10-log, net zoals op de rekenmachine: als er geen grondtal vermeldt staat, wordt er de 10-
log10 (𝑎)
log bedoelt. Op de rekenmachine kun je de log 𝑔 (𝑎) berekenen met: .
log10 (𝑔)


§1-3 Grafieken van logaritmische functies
- De grafieken 𝑓(𝑥) = 𝑔 𝑥 en 𝑘(𝑥) = log 𝑔 (𝑥) zijn elkaars spiegelbeeld in de lijn 𝑦 = 𝑥.
- Het domein van een logaritmische functie is altijd < 0, →>, en het bereik ℝ.
- De horizontale asymptoot van de basisfunctie is 𝑥 = 0
- Het snijpunt met de x-as is het punt (1,0), want log 𝑔 (1) = 0.
- Het grondtal g is altijd positief, en nooit gelijk aan 1.
- Er geldt ook: voor 0 < 𝑔 < 1 is de grafiek dalend en voor 𝑔 > 1 is de grafiek stijgend.

§1-4 Rekenregels voor logaritmen
𝑎
log 𝑔 (𝑎) + log 𝑔 (𝑏) = log 𝑔 (𝑎 ∙ 𝑏) log 𝑔 (𝑎) − log 𝑔 (𝑏) = log 𝑔 (𝑏 ) 𝑝 ∙ log 𝑔 (𝑎) = log 𝑔 (𝑎𝑝 )
log𝑏 (𝑎)
𝑔log𝑔(𝑎) = 𝑎 log 𝑔 (𝑎) =
log𝑏 (𝑔)


§1-5 Formules herleiden
Een logaritmische formule kun je herleiden tot een exponentiële formule, en omgekeerd geldt hetzelfde.
Daarvoor gebruik je de basisregel: 𝑔𝑏 = 𝑎, waaruit volgt: b = log 𝑔 (𝑎), en omgekeerd:
log 𝑔 (𝑎) = 𝑏, waaruit volgt: 𝑎 = 𝑔𝑏 .

§1-6 Vergelijkingen en ongelijkheden
Je kunt met de regenregels voor de logaritmen een logaritmische vergelijking oplossen, en natuurlijk met de
basisregel: voor log 𝑔 (𝑥) = 𝑐 is de exacte oplossing 𝑥 = 𝑔𝑐 .

Bij een ongelijkheid met een logaritme moet je het volgende stappenplan volgen:
1. Bereken het domein van de logaritme. (getal tussen haakjes > 0)
2. Eerst van de ongelijkheid een vergelijking maken, en die oplossen
3. Schets maken (m.b.v. rekenmachine), en de oplossingen + het domein aangeven.
4. Op basis van de schets en de oplossing(en) het antwoord geven, NIET HET DOMEIN VERGETEN!!

, WISKUNDE B – 5V – HOOFDSTUK 2 FUNCTIES BEWERKEN


Voorkennis
Hieronder staan de 10 standaardfuncties:
1
𝑓(𝑥) = 𝑐 𝑓(𝑥) = 𝑥 𝑓(𝑥) = 𝑥² 𝑓(𝑥) = 𝑥 𝑛 𝑓(𝑥) =
𝑥
𝑓(𝑥) = √𝑥 𝑓(𝑥) = sin(𝑥) 𝑓(𝑥) = cos(𝑥) 𝑓(𝑥) = 𝑔 𝑥 𝑓(𝑥) = log 𝑔 (𝑥)

§2-1 Transformaties
Je kunt op een grafiek een transformatie toepassen, bijvoorbeeld door translatie (verschuiven) of spiegelen.
- Verticale translatie: 𝑔(𝑥) = 𝑓(𝑥) + 𝑑 - Horizontale translatie: 𝑔(𝑥) = 𝑓(𝑥 − 𝑐)
1
- Verm. t.o.v. de x-as: 𝑔(𝑥) = 𝑓(𝑥) ∙ 𝑎 - Verm. t.o.v. de y-as: 𝑔(𝑥) = 𝑓( ∙ 𝑥)
𝑏

Spiegelen in de x-as betekent dat je de grafiek vermenigvuldigt t.o.v. de x-as met -1
Spiegelen in de y-as betekent dat je de grafiek vermenigvuldigt t.o.v. de y-as met -1

§2-2 Absolute waarde
De absolute waarde van x is de afstand tussen het getal x en 0, je noteert dat als |𝑥|. Alle negatieve waarden van
y worden dan omgezet naar het tegenovergestelde getal.
𝑥 𝑎𝑙𝑠 𝑥 ≥ 0
Je kunt de absolute waarde ook schrijven als: |𝑥| = {
−𝑥 𝑎𝑙𝑠 𝑥 < 0
Als de oorspronkelijke grafiek één top/meerdere toppen heeft, komen er extreme waarden bij, namelijk minima
die liggen op de punten waar de oorspronkelijke grafiek de x-as sneed.

§2-3 Inverse functie
Bij de inverse functie van een functie geldt dat de x-waarden en y-waarden zijn omgedraaid. Je noteert een
inverse functie als 𝑓 𝑖𝑛𝑣 . De grafieken van f en 𝑓 𝑖𝑛𝑣 zijn elkaars spiegelbeeld bij spiegelen in de lijn 𝑦 = 𝑥.

Je maakt het functievoorschrift van de inverse van een functie door:
1. Eerst het functievoorschrift te vervangen door een vergelijking in y = x……
2. Vervang overal waar x staat, de x door y, en waar y staat de y door x.
3. Herleid de vergelijking naar een vorm waarin de y is uitgedrukt in x.
4. Schrijf de verkregen vergelijking als een functievoorschrift

§2-4 Gelijkwaardige functies
Twee functies zijn gelijkwaardig of equivalent aan elkaar als elke combinatie van waarden bij beide formules
voldoen. Je krijgt een gelijkwaardige formule door die te herleiden naar een andere vorm.

§2-5 Parameters
Een verzameling van functies ontstaat door een parameter te gebruiken. Zo’n verzameling van functies noem je
een familie van functies. De familie van functies met parameter p noteer je als 𝑓𝑝 . De bijhorende grafieken
vormen een bundel van grafieken. Vaak hebben alle grafieken een bepaalde gezamenlijke eigenschap, zoals:
- Alle grafieken van de bundel gaan door één punt.
- Alle toppen van de grafieken liggen op een bepaalde lijn.

Beoordelingen van geverifieerde kopers

Alle reviews worden weergegeven
5 jaar geleden

3,0

1 beoordelingen

5
0
4
0
3
1
2
0
1
0
Betrouwbare reviews op Stuvia

Alle beoordelingen zijn geschreven door echte Stuvia-gebruikers na geverifieerde aankopen.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
gerardvanv Universiteit Utrecht
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
13
Lid sinds
8 jaar
Aantal volgers
8
Documenten
0
Laatst verkocht
3 jaar geleden

4,0

2 beoordelingen

5
1
4
0
3
1
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen