100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Tentamen (uitwerkingen)

Geometry Unit Test (88-) Questions and Answer

Beoordeling
-
Verkocht
-
Pagina's
2
Cijfer
A+
Geüpload op
14-09-2024
Geschreven in
2024/2025

Geometry Unit Test (88-) Questions and Answer Is MNL ≅ QNL? Why or why not? A. Yes, they are congruent by either ASA or AAS. Quadrilateral ABCD is translated down and left to form quadrilateral OLMN. If AB = 6 units, BC = 5 units, CD = 8 units, and AD = 10 units, what is LO? B. 6 units Previous Play Next Rewind 10 seconds Move forward 10 seconds Unmute 0:00 / 0:15 Full screen Brainpower Read More Three quadrilaterals exist such that GHJK ≅ ASDF and GHJK ≅ VBNM. If MV measures 3 cm, which other segment must measure 3 cm? A. AF Triangle DEF is congruent to GHJ by the SSS theorem. Which rigid transformation is required to map DEF onto GHJ? D. translation How can a translation and a reflection be used to map ΔHJK to ΔLMN? B. Translate K to N and reflect across the line containing JK. Is there a series of rigid transformations that could map ΔQRS to ΔABC? If so, which transformations could be used? D. Yes, ΔQRS can be translated so that Q is mapped to A and then reflected across the line containing QS. Two sides and the non-included right angle of one right triangle are congruent to the corresponding parts of another right triangle. Which congruence theorem can be used to prove that the triangles are congruent? D. HL What additional information is needed to prove that the triangles are congruent using the AAS congruence theorem? C. LOA ≅ LMA Given: bisects ∠MRQ; ∠RMS ≅ ∠RQS. Which relationship in the diagram is true? B. △RMS ≅ △RQS by AAS Which congruence theorem can be used to prove △WXS ≅ △YZS? C. SAS Could ΔJKL be congruent to ΔXYZ? Explain. C. No, because the hypotenuse of one triangle is equal in length to the leg of the other triangle. In ΔXYZ, m∠X = 90° and m∠Y = 30°. In ΔTUV, m∠U = 30° and m∠V = 60°. Which is true about the two triangles? A. ΔXYZ ≅ ΔTUV Which pair of triangles can be proven congruent by SAS? A. Quadrilateral LMNO is reflected over the line as shown, resulting in quadrilateral CDAB. Given the congruency statement LMNO ≅ CDAB, which segment corresponds to ML? D. DC In the diagram, ∠J ≅ ∠M and JL ≅ MR. What additional information is needed to show ΔJKL ≅ △MNR by SAS? D. JK ≅ MN

Meer zien Lees minder
Instelling
Mnl
Vak
Mnl








Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Mnl
Vak
Mnl

Documentinformatie

Geüpload op
14 september 2024
Aantal pagina's
2
Geschreven in
2024/2025
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Voorbeeld van de inhoud

Geometry Unit Test (88%) Questions and
Answers
Is MNL ≅ QNL? Why or why not? - answer A. Yes, they are congruent by either ASA
or AAS.

Quadrilateral ABCD is translated down and left to form quadrilateral OLMN. If AB = 6
units, BC = 5 units, CD = 8 units, and AD = 10 units, what is LO? - answer B. 6 units

Three quadrilaterals exist such that GHJK ≅ ASDF and GHJK ≅ VBNM. If MV
measures 3 cm, which other segment must measure 3 cm? - answer A. AF

Triangle DEF is congruent to GHJ by the SSS theorem. Which rigid transformation is
required to map DEF onto GHJ? - answer D. translation

How can a translation and a reflection be used to map ΔHJK to ΔLMN? - answer B.
Translate K to N and reflect across the line containing JK.

Is there a series of rigid transformations that could map ΔQRS to ΔABC? If so, which
transformations could be used? - answer D. Yes, ΔQRS can be translated so that Q
is mapped to A and then reflected across the line containing QS.

Two sides and the non-included right angle of one right triangle are congruent to the
corresponding parts of another right triangle. Which congruence theorem can be used
to prove that the triangles are congruent? - answer D. HL

What additional information is needed to prove that the triangles are congruent using
the AAS congruence theorem? - answer C. LOA ≅ LMA

Given: bisects ∠MRQ; ∠RMS ≅ ∠RQS. Which relationship in the diagram is true? -
answer B. △RMS ≅ △RQS by AAS

Which congruence theorem can be used to prove △WXS ≅ △YZS? - answer C.
SAS

Could ΔJKL be congruent to ΔXYZ? Explain. - answer C. No, because the
hypotenuse of one triangle is equal in length to the leg of the other triangle.

In ΔXYZ, m∠X = 90° and m∠Y = 30°. In ΔTUV, m∠U = 30° and m∠V = 60°. Which is
true about the two triangles? - answer A. ΔXYZ ≅ ΔTUV

Which pair of triangles can be proven congruent by SAS? - answer A.
€10,93
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten


Ook beschikbaar in voordeelbundel

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
Pogba119 Harvard University
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
48
Lid sinds
1 jaar
Aantal volgers
2
Documenten
4936
Laatst verkocht
1 maand geleden
NURSING TEST

BEST EDUCATIONAL RESOURCES FOR STUDENTS

3,9

9 beoordelingen

5
4
4
2
3
2
2
0
1
1

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen