100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4,6 TrustPilot
logo-home
Samenvatting

Management Research Methods 2 (MRM2) - Summary - Universiteit van Amsterdam (UvA)

Beoordeling
-
Verkocht
6
Pagina's
32
Geüpload op
18-11-2019
Geschreven in
2017/2018

All notes from the lectures and study materials summarized to optimally prepare you for the exam. Including supporting images. Management Research Methods 2 (MRM2) - Summary / Samenvatting - University of Amsterdam / Universiteit van Amsterdam - Pre-Master's in Business Administration - Pre-Master - Management Research Methods

Meer zien Lees minder











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
18 november 2019
Aantal pagina's
32
Geschreven in
2017/2018
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Content
Analysis of Variance................................................................................................................................. 3
Conceptual Models.............................................................................................................................. 3
Moderation...................................................................................................................................... 3
Mediation ........................................................................................................................................ 3
ANOVA ................................................................................................................................................. 4
Conditions........................................................................................................................................ 4
Hypothesis ....................................................................................................................................... 4
Test Statistics ................................................................................................................................... 5
Planned Contrast ............................................................................................................................. 9
Post-Hoc Tests ................................................................................................................................. 9
Moderation in ANOVA....................................................................................................................... 10
Factorial ANOVA ................................................................................................................................ 11
Conditions...................................................................................................................................... 11
Mean Squares ................................................................................................................................ 12
F-Test ............................................................................................................................................. 12
Partial Eta Squared (η2) ................................................................................................................. 13
Post-Hoc Tests ............................................................................................................................... 13
Regression ............................................................................................................................................. 14
Assumptions of Regression ........................................................................................................... 15
Model Testing ................................................................................................................................ 16
Categorical PV´s in regression and dummy variables ....................................................................... 18
Interpretation of β-coefficient ...................................................................................................... 19
Multicollinearity ................................................................................................................................ 20
Detecting multicollinearity ............................................................................................................ 20
Rules of thumb .............................................................................................................................. 20
Mediation .......................................................................................................................................... 21
Logistic Regression ............................................................................................................................ 24
Pseude-R2 ...................................................................................................................................... 24
Model Statistics ............................................................................................................................. 24
Coefficients .................................................................................................................................... 25
Factor Analysis (FA) ........................................................................................................................... 26
Principal Component Analysis (PCA) ............................................................................................. 26
Initial checks .................................................................................................................................. 26
Main analysis ................................................................................................................................. 27

1

, Reliability Analysis ............................................................................................................................. 29
Cronbach’s Alpha........................................................................................................................... 29
Further Analysis ............................................................................................................................. 30
References ............................................................................................................................................. 31




2

,Analysis of Variance

Conceptual Models
Conceptual models are visual representations of relations between theoretical constructs (and
variables) of interest.

Outcome variable (OV) = Dependent variable → Dependent upon other variables

Predictor variable (PV) = Independent variable → Not dependent upon other variables

Both OV’s and PV’s can have different measurement scales:

• Categorical
• Quantitative

Moderation
The proposed effect is stronger/weaker in certain settings. One variable moderates the relationship
between two other variables.

For example: “Mobile ownership only leads to higher mobile spending when there are options to pay
via mobile (not when there are no options to pay via mobile).”




Mediation
The proposed effect “goes through” another variable. One variable mediates the relationship
between two other variables.

For example: “The positive effect of mobile ownership on online mobile spending is mediated by
mobile browsing.”




3

, Rules for Conceptual Modals
• The boxes represent variables;
• Arrows represent relationships between variables;
• Arrows go from predictor variables (PV) to outcome variables (OV)

ANOVA
ANOVA is “Analysis of Variance” → Examine how much of the variance in the data can be explained
by the independent variable.

ANOVA is used to test whether statistically significant differences exist in scores on a quantitative
outcome variable, between different levels (groups) of a categorical predictor variable.

Variance: The average of the squared differences from the mean.




Conditions
(Between-subject) ANOVA is used when:

✓ Outcome Variable = Quantitative;
✓ Predictor Variable = Categorical > 2 groups;
✓ Between-subject design (Everyone participates in one experiment group only);
✓ Variance is homogenous across groups;
o Levene Statistic (H0: Variances are homogenous.)
✓ Residuals are normally distributed

Hypothesis
Hypotheses in ANOVA

H0: There is no difference in outcome variable scores between different levels of the independent
variable. → μ1 = μ2 = … = μi

H1: There is a difference in outcome variable scores between at least two levels of the independent
variable. → μ1 ≠ μ2 = … ≠ μi




4
€6,49
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
hjdeman

Maak kennis met de verkoper

Seller avatar
hjdeman Universiteit van Amsterdam
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
6
Lid sinds
6 jaar
Aantal volgers
5
Documenten
1
Laatst verkocht
3 jaar geleden

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen