100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Tentamen (uitwerkingen)

MAT1503 Assignment 5 (COMPLETE ANSWERS) 2024 - DUE 10 September 2024

Beoordeling
-
Verkocht
1
Pagina's
42
Cijfer
A+
Geüpload op
24-08-2024
Geschreven in
2024/2025

MAT1503 Assignment 5 (COMPLETE ANSWERS) 2024 - DUE 10 September 2024

Instelling
Vak











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Gekoppeld boek

Geschreven voor

Instelling
Vak

Documentinformatie

Geüpload op
24 augustus 2024
Aantal pagina's
42
Geschreven in
2024/2025
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Voorbeeld van de inhoud

,MAT1503 Assignment 5 (COMPLETE ANSWERS)
2024 - DUE 10 September 2024 ; 100% TRUSTED
Complete, trusted solutions and explanations.
Question 1: 12 Marks (1.1) Let U and V be the planes given by:
(2) U : λx + 5y − 2λz − 3 = 0, V : −λx + y + 2z + 1 = 0. Determine
for which value(s) of λ the planes U and V are: (a) orthogonal,
(2) (b) Parallel. (2) (1.2) Find an equation for the plane that
passes through the origin (0, 0, 0) and is parallel to the (3) plane
−x + 3y − 2z = 6. (1.3) Find the distance between the point
(−1,−2, 0) and the plane 3x − y + 4z = −2. (3)
Let's break down each part of the question step-by-step:
1.1 (a) Orthogonal Planes
To determine for which value(s) of λ\lambdaλ the planes UUU
and VVV are orthogonal, we need to check the dot product of
their normal vectors.
The planes are given by: U:λx+5y−2λz−3=0U: \lambda x + 5y - 2\
lambda z - 3 = 0U:λx+5y−2λz−3=0 V:−λx+y+2z+1=0V: -\lambda x
+ y + 2z + 1 = 0V:−λx+y+2z+1=0
The normal vector of plane UUU is nU=(λ,5,−2λ)\mathbf{n}_U =
(\lambda, 5, -2\lambda)nU=(λ,5,−2λ).
The normal vector of plane VVV is nV=(−λ,1,2)\mathbf{n}_V =
(-\lambda, 1, 2)nV=(−λ,1,2).
Two planes are orthogonal if their normal vectors are
orthogonal. This means their dot product should be zero:

,nU⋅nV=(λ,5,−2λ)⋅(−λ,1,2)\mathbf{n}_U \cdot \mathbf{n}_V = (\
lambda, 5, -2\lambda) \cdot (-\lambda, 1, 2)nU⋅nV
=(λ,5,−2λ)⋅(−λ,1,2)
Calculate the dot product:
nU⋅nV=λ(−λ)+5⋅1+(−2λ)⋅2\mathbf{n}_U \cdot \mathbf{n}_V = \
lambda(-\lambda) + 5 \cdot 1 + (-2\lambda) \cdot 2nU⋅nV
=λ(−λ)+5⋅1+(−2λ)⋅2 =−λ2+5−4λ= -\lambda^2 + 5 - 4\
lambda=−λ2+5−4λ
Set the dot product to zero:
−λ2+5−4λ=0-\lambda^2 + 5 - 4\lambda = 0−λ2+5−4λ=0
Rearrange into standard quadratic form:
λ2+4λ−5=0\lambda^2 + 4\lambda - 5 = 0λ2+4λ−5=0
Solve this quadratic equation using the quadratic formula
λ=−b±b2−4ac2a\lambda = \frac{-b \pm \sqrt{b^2 - 4ac}}
{2a}λ=2a−b±b2−4ac:
λ=−4±16+202\lambda = \frac{-4 \pm \sqrt{16 + 20}}
{2}λ=2−4±16+20 λ=−4±362\lambda = \frac{-4 \pm \sqrt{36}}
{2}λ=2−4±36 λ=−4±62\lambda = \frac{-4 \pm 6}{2}λ=2−4±6
λ=1 or λ=−5\lambda = 1 \text{ or } \lambda = -5λ=1 or λ=−5
Thus, the planes UUU and VVV are orthogonal for λ=1\lambda =
1λ=1 and λ=−5\lambda = -5λ=−5.
1.1 (b) Parallel Planes

, Two planes are parallel if their normal vectors are parallel. This
means that one normal vector is a scalar multiple of the other.
For planes UUU and VVV:
nU=(λ,5,−2λ)\mathbf{n}_U = (\lambda, 5, -2\lambda)nU
=(λ,5,−2λ) nV=(−λ,1,2)\mathbf{n}_V = (-\lambda, 1, 2)nV
=(−λ,1,2)
We need to find λ\lambdaλ such that:
(λ,5,−2λ)=k(−λ,1,2)(\lambda, 5, -2\lambda) = k(-\lambda, 1, 2)
(λ,5,−2λ)=k(−λ,1,2)
Equate the components:
λ=−kλ\lambda = -k\lambdaλ=−kλ 5=k5 = k5=k −2λ=2k-2\lambda
= 2k−2λ=2k
From 5=k5 = k5=k, substitute kkk into the third equation:
−2λ=2×5-2\lambda = 2 \times 5−2λ=2×5 −2λ=10-2\lambda =
10−2λ=10 λ=−5\lambda = -5λ=−5
Substitute λ=−5\lambda = -5λ=−5 into λ=−kλ\lambda = -k\
lambdaλ=−kλ:
−5=−5k-5 = -5k−5=−5k k=1k = 1k=1
So, the planes UUU and VVV are parallel when λ=−5\lambda = -
5λ=−5.
1.2 Equation of a Plane Parallel to a Given Plane

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
Novaace1 University of South Africa (Unisa)
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
270
Lid sinds
1 jaar
Aantal volgers
102
Documenten
445
Laatst verkocht
1 week geleden

3,4

30 beoordelingen

5
10
4
6
3
6
2
2
1
6

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen