100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Tentamen (uitwerkingen)

Solutions to Skill-Assessment Exercises

Beoordeling
-
Verkocht
-
Pagina's
72
Cijfer
A+
Geüpload op
26-07-2024
Geschreven in
2023/2024

Solutions to Skill-Assessment Exercises To Accompany Control Systems Engineering 4 th Edition By Norman S. Nise John Wiley & Sons Copyright © 2004 by John Wiley & Sons, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any from or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750- 8400, fax (978) 750-4470. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, e-mail: . To order books please call 1 (800) 225-5945. ISBN John Wiley & Sons, Inc. 111 River Street Hoboken, NJ 07030 USA Solutions to Skill-Assessment Exercises Chapter 2 2.1. The Laplace transform of t is 1 s 2 using Table 2.1, Item 3. Using Table 2.2, Item 4, F(s) = 1 (s + 5)2 . 2.2. Expanding F(s) by partial fractions yields: F(s) = A s + B s + 2 + C (s + 3)2 + D (s + 3) where, A s s S = + + = → 10 2 3 5 9 2 0 ( )( ) B = 10 s(s + 3)2 S→−2 = −5 C = 10 s(s + 2) S→−3 = 10 3 , and D = (s + 3)2 dF(s) ds s→−3 = 40 9 Taking the inverse Laplace transform yields, f (t) = 5 9 − 5e −2t + 10 3 te−3t + 40 9 e −3t 2.3. Taking the Laplace transform of the differential equation assuming zero initial conditions yields: s 3C(s) + 3s2C(s) + 7sC(s) + 5C(s) = s2R(s) + 4sR(s) + 3R(s) Collecting terms, (s 3 + 3s 2 + 7s + 5)C(s) = (s 2 + 4s + 3)R(s) Thus, 2 Solutions to Skill-Assessment Exercises C(s) R(s) = s 2 + 4s + 3 s 3 + 3s 2 + 7s + 5 2.4. G(s) = C(s) R(s) = 2s +1 s 2 + 6s + 2 Cross multiplying yields, d 2 c dt 2 + 6 dc dt + 2c = 2 dr dt + r 2.5. C(s) = R(s)G(s) = 1 s 2 * s (s + 4)(s + 8) = 1 s(s + 4)(s + 8) = A s + B (s + 4) + C (s + 8) where A = 1 (s + 4)(s + 8) S→0 = 1 32 B = 1 s(s + 8) S→−4 = − 1 16 , and C = 1 s(s + 4) S→−8 = 1 32 Thus, c(t) = 1 32 − 1 16 e −4t + 1 32 e −8t 2.6. Mesh Analysis Transforming the network yields, Now, writing the mesh equations, Chapter 2 3 (s +1)I 1 (s) − sI2 (s) − I 3 (s) = V(s) −sI1 (s) + (2s +1)I 2 (s) − I 3 (s) = 0 −I 1 (s) − I 2 (s) + (s + 2)I 3 (s) = 0 Solving the mesh equations for I2 (s), I 2 (s) = (s +1) V(s) −1 −s 0 −1 −1 0(s + 2) (s +1) −s −1 −s (2s +1) −1 −1 −1 (s + 2) = (s 2 + 2s +1)V(s) s(s 2 + 5s + 2) But, VL (s) = sI2 (s) Hence, VL (s) = (s 2 + 2s +1)V(s) (s 2 + 5s + 2) or VL (s) V(s) = s 2 + 2s +1 s 2 + 5s + 2 Nodal Analysis Writing the nodal equations, ( 1 s + 2)V1 (s) − VL (s) = V(s) −V1 (s) + ( 2 s +1)VL (s) = 1 s V(s) Solving for VL (s), VL (s) = ( 1 s + 2) V(s) −1 1 s V(s) ( 1 s + 2) −1 −1 (2 s +1) = (s 2 + 2s +1)V(s) (s 2 + 5s + 2) or VL (s) V(s) = s 2 + 2s +1 s 2 + 5s + 2 4 Solutions to Skill-Assessment Exercises 2.7. Inverting G(s) = − Z2 (s) Z1 (s) = −100000 (105 / s) = −s Noninverting G(s) = [Z1 (s) + Z2 (s)] Z1 (s) = ( 105 s +105 ) ( 105 s ) = s +1 2.8. Writing the equations of motion, (s 2 + 3s +1)X1 (s) − (3s +1)X2 (s) = F(s) −(3s +1)X1 (s) + (s 2 + 4s +1)X2 (s) = 0 Solving for X2 (s), X2 (s) = (s 2 + 3s +1) F(s) −(3s +1) 0 (s 2 + 3s +1) −(3s +1) −(3s +1) (s 2 + 4s +1) = (3s +1)F(s) s(s 3 + 7s 2 + 5s +1

Meer zien Lees minder
Instelling
Systems Engineering
Vak
Systems Engineering











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Systems Engineering
Vak
Systems Engineering

Documentinformatie

Geüpload op
26 juli 2024
Aantal pagina's
72
Geschreven in
2023/2024
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Voorbeeld van de inhoud

Solutions to
Skill-Assessment
Exercises
To Accompany
Control Systems Engineering
4th Edition
By
Norman S. Nise
John Wiley & Sons Copyright © 2004 by John Wiley & Sons, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any from or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-
8400, fax (978) 750-4470. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street,
Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, e-mail: . To order books please call 1 (800) 225-5945. ISBN 0-471-44577-0 John Wiley & Sons, Inc. 111 River Street Hoboken, NJ 07030 USA Solutions to Skill-Assessment
Exercises
Chapter 2
2.1.
The Laplace transform of t is 1
s2 using Table 2.1, Item 3. Using Table 2.2, Item 4,
F(s)=1
(s+5)2.
2.2. Expanding F(s) by partial fractions yields:
F(s)=A
s+B
s+2+C
(s+3)2+D
(s+3)
where,
AssS=++=
→10
235
92
0() () B=10
s(s+3)2
S→−2=−5C=10
s(s+2)S→−3=10
3, and
D=(s+3)2dF(s)
ds s→−3=40
9
Taking the inverse Laplace transform yields,
f(t)=5
9−5e−2t+10
3te−3t+40
9e−3t
2.3. Taking the Laplace transform of the differential equation assuming zero initial
conditions yields:
s3C(s) + 3s2C(s) + 7sC(s) + 5C(s) = s2R(s) + 4sR(s) + 3R(s)
Collecting terms,
(s3+3s2+7s+5)C(s)=(s2+4s+3)R(s)
Thus, 2 Solutions to Skill-Assessment Exercises
C(s)
R(s)=s2+4s+3
s3+3s2+7s+5
2.4.
G(s)=C(s)
R(s)=2s+1
s2+6s+2
Cross multiplying yields,
d2c
dt2+6dc
dt+2c=2dr
dt+r
2.5.
C(s)=R(s)G(s)=1
s2*s
(s+4)(s+8)=1
s(s+4)(s+8)=A
s+B
(s+4)+C
(s+8)
where
A=1
(s+4)(s+8)S→0=1
32B=1
s(s+8)S→−4=−1
16, and C=1
s(s+4)S→−8=1
32
Thus,
c(t)=1
32−1
16e−4t+1
32e−8t
2.6.
Mesh Analysis
Transforming the network yields,
Now, writing the mesh equations,

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
GlobalExamArchive Acupuncture & Integrative Medicine College, Berkeley
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
92
Lid sinds
3 jaar
Aantal volgers
33
Documenten
1506
Laatst verkocht
2 weken geleden
GlobalExamArchive – International Study Resources

GlobalExamArchive is an international academic resource platform dedicated to providing original, well-organized study materials for students across diverse disciplines. Our archive includes carefully prepared test banks, solution manuals, revision notes, and exam-focused resources designed to support effective learning and confident exam preparation. All materials are developed independently with a focus on clarity, academic integrity, and relevance to modern curricula, serving students from institutions worldwide.

Lees meer Lees minder
3,6

16 beoordelingen

5
8
4
0
3
3
2
3
1
2

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen