100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Extensive Summary for SR (Statistical Reasoning: Theory and Application) exam

Beoordeling
-
Verkocht
2
Pagina's
55
Geüpload op
25-07-2024
Geschreven in
2023/2024

All relevant, in-debth content for SR (previosuly SMCR) exam at UvA. Including book material, class materials, SPSS manuals, examples, and notes from other relevant materials.












Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
25 juli 2024
Aantal pagina's
55
Geschreven in
2023/2024
Type
Samenvatting

Voorbeeld van de inhoud

SMCR Exam

Week 1

Inferential statistics helps us to generalize conclusions; make statements about larger set of
observations
- Offers us a p-value and a CI
Sampling distribution → a crucial link between the population and the sample
- Random sample is sometimes not representative of the population
- Score of a first sample on a new variable

E.g. variable - No.of yellow candies = sample statistic
Possible values (possible no. of candies) = sampling space

Sampling distribution (means of all samples collected)




- If we draw 1000 samples we get the sampling distribution
- Mean of sampling distribution represents the true value in the population

Caution:
1. Sample must be random
2. Sample must be (is) an unbiased estimator of the population (mean) (unbiased =
random sample)
3. Sample distribution looks slightly different if sample distribution is continuous →
contains number with endless number of decimal spaces
- If the sample mean is continuous sample statistic we use probability densities
4. Consider practical relevance

★ Sample distribution → only the data we sampled to examine from the population
★ Statistical inference → estimating and testing the Null Hypothesis


1

, ★ Sampling space → collection of all possible outcome scores/sample statistic values
★ Sample statistic → a value/number describing characteristics of a sample (e.g. no.of
yellow candies); also called - Random Variable (variable- because different samples
have different scores, that depend on chance?)
- Discrete sample statistics → the sampling distribution tells us the probability of
individual sample outcomes.
- Continuous sample statistics → it tells us the probability density, which gives us the
probability of drawing a sample with an outcome that is at least or at most a particular
value, or an outcome that is between two values.

★ Sampling Distribution → distribution of the outcome scores of very many samples
- all possible sample statistic values + their probabilities (of drawing a particular value and
min and max value) and probability densities

Calculating probability → 26 (e.g. number of samples with 5 yellow candies )/1000 (number of
samples drawn)=0.026 (probability of drawing a sample with 5 yellow candies)

★ Probability Distributions → a sampling space with probabilities
- tells us the probability a particular outcome may occur (0% - 100%); discrete random
variables (a finite value that can be counted)
- A spread of entire population
- Probability distribution of all possible outcomes are 0 because there is infinite no. of
possible values (we can never estimate the exact one)
- Displaying probability as an area between horizontal axis and a curve → probability
density function

★ Probability Density function → gives us the probability of values between two
thresholds AND gives us the probability up to a threshold value = left-hand probability
(used to calculate p-values)
- Determines the shape of a distribution
- A normal distribution has a probability density function
- Getting a probability that a continuous random variable falls within a particular range
- 2 functions of probability distributions:
a) How likely are we to draw a sample with a particular value
b) Finding a threshold values that separate the top 10% or bottom 5% of distribution

Expected value = population proportion x total no. of (things)

Expected value → average/mean of the sampling distribution of a random variable (average of
probability distribution; average of what we are studying)



2

,Cases → things counted; units of analysis

Unbiased estimator (a sample statistic) → when the SAMPLING DISTRIBUTION is equal to
POPULATION VALUE (population distribution) (average of the sampling distribution =
expected value)
- Estimate is downward biased → when it is too low
- Average is unbiased estimator?

Sample is (in principal) representative of population if variables in the sample are distributed
in the same way in the population.

In sampling distribution → Samples are cases (units of analysis) and Sample Characteristics
are observations
- Sampling distribution collects a large number of sampling proportions → the mean of
proportions = sample proportion is an unbiased estimator of sample proportion
- Sample and population consist of same type of observations

Empirical cycle → process of coming up with hypothesis about how stuff works and testing that
hypothesis against empirical data in a systematic way (deductive approach)
- Observation → sparks an idea for new research hypothesis; comes from previous
research; observing population in 1 or more specific instances
- Induction → specific to general statement
- Deduction → expectation/prediction; general to specific statement
- Testing → hypothesis is tested by collecting new data; prediction confirmed or not
- Evaluation → hypothesis is adjusted, rarely rejected; if confirmed - only provides
provisional support (because it can be disproven)

E.g. → experiment: flipping the coin
- Number of heads that we throw relate to the population (normal distribution) under H0:
that nothing is going on (no difference/change)
- We throw 2 times heads - a 20% chance
- H0: there is no difference in the population (difference between sample mean and the
population mean) when we falsify H0 we find support for alternative H
- H1: there is a difference in the population
- When we have a fair coin (50heads-50tails) nothing is going on (static)
- Data that we find (e.g. 2 times heads) is not = to expected value ?
- E.g. no of heads → test statistic




3

, To know what is H0 we have to know what is rare - set Alpha level and power

Binomial (probability) distribution → two states; 1/0; yes/no; discrete variables
Binomial H0: (probability of heads is 0.5)
- E.g. Expected value = 5
- Continuous line
- We assume the coin is fair
- But we cannot ever conclude that there is an unfair coin based on only throwing 2 times
heads
- We can set premises and boundaries to get a conclusion but that is NOT real → we know
for sure - but we can estimate a % of how sure we can be
- Putting a cut-off point (boundaries) determines how sure we are
- Acceptable probability to make mistake (5%)
Binomial H1: E.g. expected value is not 5, but rather 0.25
e.g the value is within the 95% range (more than a 5% chance)




4

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
kaivainomaa Universiteit van Amsterdam
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
62
Lid sinds
2 jaar
Aantal volgers
9
Documenten
17
Laatst verkocht
1 maand geleden

3,8

5 beoordelingen

5
2
4
2
3
0
2
0
1
1

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen