100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary lectures Correlational research methods

Beoordeling
5,0
(1)
Verkocht
8
Pagina's
24
Geüpload op
27-09-2019
Geschreven in
2018/2019

Summary lectures correlational research methods











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
27 september 2019
Aantal pagina's
24
Geschreven in
2018/2019
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Correlational Research Methods

Inhoudsopgave
Correlational Research Methods ...................................................................................................................... 1
Lecture 1 – 28/08/2018 ...................................................................................................................................... 3
Null hypothesis significance testing ............................................................................................................... 3
Pearson’s Correlation Coefficient ................................................................................................................... 4
Inferential statistics ........................................................................................................................................ 4
P-Value ........................................................................................................................................................... 4
Lecture 2 – 03/09/2018 ...................................................................................................................................... 4
Inferential statistics ........................................................................................................................................ 4
Confidence interval for r ................................................................................................................................ 5
Assumptions for r ........................................................................................................................................... 5
Power ............................................................................................................................................................. 5
Squared Correlation: r2XY ................................................................................................................................ 5
“Explanations” for the relationship between x and y: ................................................................................... 6
Simple linear regression analysis .................................................................................................................... 6
The linear simple regression model ............................................................................................................... 6
Simple regression analysis .............................................................................................................................. 6
Lecture 3 – 10/09/2018 ...................................................................................................................................... 7
Regression analysis ......................................................................................................................................... 7
Two ways to interpret Y’ ................................................................................................................................ 7
Interpretation regression coefficient b^1 ....................................................................................................... 7
Standardized regression coefficient () ......................................................................................................... 7
Interpretation unstandardized regression coefficient b^1: ........................................................................... 7
Interpretation standardized regression coefficient ^1:................................................................................ 7
Use b ............................................................................................................................................................... 7
Use  .............................................................................................................................................................. 7
Sum of squares ............................................................................................................................................... 8
Lecture 4 – 17/09/2018 ...................................................................................................................................... 8
Multiple regression ........................................................................................................................................ 8
Multiple Regression analysis .......................................................................................................................... 8
What do we need to know? ........................................................................................................................... 8
The Linear Multiple Regression model ........................................................................................................... 8
Partial slopes .................................................................................................................................................. 9
Main questions Multiple Regression analysis ................................................................................................ 9
Lecture 5 – 24/09/2018 ...................................................................................................................................... 9
Proportion explained variance ....................................................................................................................... 9
F-Test for the entire model ............................................................................................................................ 9
3. How well does every predictor explain/predict separately? .................................................................... 10
What happens with the explained variance if I remove a predictor? .......................................................... 10
.......................................................................................................................................................................... 11
4. Which predictor is the most important one? ........................................................................................... 12
Lecture 6 – 1/10/2018 ...................................................................................................................................... 12
Hypothesis Testing versus Estimating .......................................................................................................... 12
Multiple Linear Regression Analysis: Starting Point ..................................................................................... 12
Using Multiple regression for ....................................................................................................................... 13
Uniquely explained variance ........................................................................................................................ 13
Lecture 7 – 08/10/2018 .................................................................................................................................... 14


1

, Model with k predictors: Standard Regression Analysis .............................................................................. 14
Adjusted R-square ........................................................................................................................................ 14
Controlling for confounders ......................................................................................................................... 14
Nested models.............................................................................................................................................. 14
What do we use nested model for? ............................................................................................................. 14
Test statistic F ............................................................................................................................................... 14
Hierarchical Regression analysis................................................................................................................... 15
Lecture 8 – 23/10/2018 .................................................................................................................................... 15
Multiple Regression with Dummy variables ................................................................................................. 15
Dummies ...................................................................................................................................................... 15
Categorical values......................................................................................................................................... 15
R-square ....................................................................................................................................................... 16
Dummy Coding ............................................................................................................................................. 16
Lecture 9 – 30/10/2018 .................................................................................................................................... 16
Interaction .................................................................................................................................................... 16
Conceptual Model with an Interaction Effect .............................................................................................. 16
Interpreting main effects in the presence of interaction effects ................................................................. 17
Simple effects ............................................................................................................................................... 17
Lecture 10 – 6/11/2018 .................................................................................................................................... 17
Moderator versus Mediator and Common Cause ........................................................................................ 18
MR with Interaction between Quantitative Variables ................................................................................. 18
Interpretation of centered scores ................................................................................................................ 18
Interpreting the significance of interactions: “Probing” .............................................................................. 18
Multicollinearity ........................................................................................................................................... 18
Variance Inflation Factor (VIF) ...................................................................................................................... 19
Lecture 11 – 13/11/2018 .................................................................................................................................. 20
Overview of statistical techniques ............................................................................................................... 20
Binary Logistic Regression ............................................................................................................................ 20
Determine Logistic Function in Empirical Data ............................................................................................ 21
From probabilities to Odds ........................................................................................................................... 21
From Odds to Logit ....................................................................................................................................... 22
The corresponding function for the Logit..................................................................................................... 22
Lecture 12 – 20/11/2018 .................................................................................................................................. 22
Significance testing ....................................................................................................................................... 22
Pseudo R-square Measures .......................................................................................................................... 23
Classification tables ...................................................................................................................................... 23
Lecture 13 – 27/11/2018 .................................................................................................................................. 24
Q&A .............................................................................................................................................................. 24




2

, Lecture 1 – 28/08/2018
Exam = Multiple choice questions
+ Bonus tutorial quizzes

▪ Simple random sampling
Every member in the population has an equal chance to be sampled
▪ Stratified sampling
The population is divided into strata (e.g., based on gender, age); within each stratum a
random sample is drawn
▪ Convenience sampling
Sample of people who are readily available (e.g., people who are present in the cafeteria,
family and friends of the researcher, first year psychology students)

Descriptive statistics: summarizing data
- Measures of central tendency
o Mean
o Median: the score that separated the higher half of data from the lower half
o Mode: the score that is observed most frequently
- Measures of dispersion
o Variance
o Standard deviation

Inferential statistics: if we want to make generalization about the population, descriptive statistics of
the sample are not enough. We use inferential statistics to draw conclusions about the population,
based on the information from the sample.
- Null hypothesis significance testing
- Confidence interval estimation

Null hypothesis significance testing
1. We formulate the null and alternative hypothesis
H0:  = 6.0
H1:   6.0
2. We make a decision-rule
If the P-value < Alpha, we reject the null hypothesis
3. We obtain the T- and P-value from the output
→ Sig. (2-tailed) = two-tailed P value
4. We either reject of keep the null hypothesis and draw
conclusions
We keep the null hypothesis, because P > .05. We do not
have enough evidence to conclude that the average
exam score in the population does not equal 6.0.

Higher than Alpha or lower than Alpha → Reject
It’s very unlikely that it’s correct
Hence accept H1 as opposed to H0

95% Confidence Interval of the Difference
→ we can say with 95% certainty that  lies between … and …
Definition: when we carry out an experiment over and over again, the 95% confidence interval will
contain the real value of the parameter of interest (e.g., ) in 95% of the cases.
Interpretation: based on the data, this range of values probably contains .


3

Beoordelingen van geverifieerde kopers

Alle reviews worden weergegeven
6 jaar geleden

5,0

1 beoordelingen

5
1
4
0
3
0
2
0
1
0
Betrouwbare reviews op Stuvia

Alle beoordelingen zijn geschreven door echte Stuvia-gebruikers na geverifieerde aankopen.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
imke-ginneken Tilburg University
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
51
Lid sinds
7 jaar
Aantal volgers
43
Documenten
20
Laatst verkocht
1 jaar geleden

4,0

14 beoordelingen

5
4
4
6
3
4
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen