100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary of the paper Supervised learning based on temporal coding in spiking neural networks

Beoordeling
-
Verkocht
-
Pagina's
6
Geüpload op
05-07-2024
Geschreven in
2023/2024

This is a summary of the paper Supervised learning based on temporal coding in spiking neural networks for the course Seminar of Computer Vision by Deep Learning in TU Delft










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
5 juli 2024
Aantal pagina's
6
Geschreven in
2023/2024
Type
Samenvatting

Voorbeeld van de inhoud

Supervised learning based on
temporal coding in spiking
neural networks
Introduction
ANNs, however, are fundamentally different from spiking networks. Unlike ANN
neurons that are analog-valued, spiking neurons communicate using all-or-
nothing discrete spikes. A spike triggers a trace of synaptic current in the target
neuron


While backpropagation is a well-developed general technique for training
feedforward ANNs, there is no general technique for training feedforward
spiking neural networks.
In a stochastic formulation, the goal is to maximize the likelihood of an entire
output spike pattern. The stochastic formulation is needed to ’smear out’ the
discrete nature of the spike, and to work instead with spike generation
probabilities that depend smoothly on network parameters and are thus more
suitable for gradient descent learning.
In this paper, we develop a direct training approach that does not try to reduce
spiking networks to conventional ANNs. Instead, we relate the time of any spike
differentiably to the times of all spikes that had a causal influence on its
generation. We can then impose any differentiable cost function on the spike
times of the network and minimize this cost function directly through gradient
descent.


Network Model
Membrane Dynamics: The membrane potential (V) of neuron j is described by
a differential equation where the right hand side is the synaptic current (which
is determined by the weights).
Synaptic current thus jumps instantaneously on the arrival of an input spike,
then decays exponentially with time constant τsyn




Supervised learning based on temporal coding in spiking neural networks 1

, Spiking Behaviour: A neuron spikes when its membranes potential crosses a
firing threshold (set to 1 in this case). After spiking, the membrane potential is
reset to 0. The model allows the membrane potential to go below zero if the
integral of the synaptic current is negative.


Initial Equation:

Membrane Potential for a neuron
recieving N spikes at several times
with weights


This is because set prediction is given a predefined number of objects
(some can be empty)

The model learns to predict the locations and sizes of the objects without
relying on a pre-placed grid

Thanks to the one-to-one matching with bipartite matching there will be no
overlapping bboxes and thus no need for NMS :)



In a feedforward spiking network that uses a temporal coding scheme where
information is encoded in spike times instead of spike rates, the network input-
output relation is differentiable almost everywhere.

The neuron spikes when its
membrane potential reaches the
firing threshold (to 1)=




Exponents to simplify the calculations. The sum of the weights needs to be
greater than 1 which ensures that z_out = exp(t_out) is always positive




Supervised learning based on temporal coding in spiking neural networks 2
€7,16
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
guillemribes

Ook beschikbaar in voordeelbundel

Thumbnail
Voordeelbundel
Full Paper Summary for CS by DL
-
9 2024
€ 64,44 Meer info

Maak kennis met de verkoper

Seller avatar
guillemribes Technische Universiteit Delft
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
0
Lid sinds
1 jaar
Aantal volgers
0
Documenten
11
Laatst verkocht
-

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen