100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary Linear Algebra (JBM075)

Beoordeling
-
Verkocht
-
Pagina's
31
Geüpload op
16-06-2024
Geschreven in
2021/2022

Summary with examples, exercises and some proofs












Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Heel boek samengevat?
Ja
Geüpload op
16 juni 2024
Aantal pagina's
31
Geschreven in
2021/2022
Type
Samenvatting

Voorbeeld van de inhoud

,A echelon form
system of the
is matrix has
consisenting row
an no

the
gorn
:
of
10 ..... 06
· where b + 0
A thus consisent in case has least solution
system is it at one
·

, .


o
unique
solution When there are variables Otherwise infinite
no
gree ,


amount solutions
of


Vectors


A matrix with just one column is called a rector



m= (3) ,
v =
(2)
Note that n + U
.

The complete
Jet vectors with two entrice is denoted by R
of "
, rectors

With three entries
by ,
and rectors With n entrie by R!




=)
Definitions
Let h and v be vectors in A :


= no v .
Their u




n + v is then defined a : n + v =



W
Definition :
Let
h be a vector in R and let Ch be a salar .
Then , the


(en)
ecalar multiplication with
of
> h is given by :
2 =




The o vector ,
is a vector whose entries are all
equal
to 0
.

Then , the
following propertie hold for all vectore U, v
,
WER and

= calcr <, d = k + v = V +4

·
(u + v) +w = n + (V + w)

· uto = 0 +u = u

4 + u
( 4)
-

· n + -
= =
0


c(u+ u) = cu + 2r
·
(( + d)u = Eu + du
·
<(du) = (d) v


·
In = u



Given are the rectors v
,, We
, ...,
Un &V and Scalers C
,, 12 , ..., In
.


Y =
C , Vi + C2Ve +.... + CUn

is called a linear combination
of u
, ....,
Un with
treights < ,
...,
<


Span


If then the all lineur combination
"
V
,
...
un are in ,
cet of of
V
, ..., Un

is denoted
by Span &U, .....) Vul and termed the subset
of B
spained by V
1
, ... m




Thus :
SpanEU
, ..... rub = 2, v , + Seve +.... + CrVK


Span(s) =

[ civ : 1 vies]

The recrorb is in spanEU ,, Ve , ...,
U. 3
if : X, V , +
X2 Vn +... + X - Un = b
has a solution .
Thus the zero , rector is always in the span
.



Span 327 hae a line through the origin .



Spand U
,, Wz3 is a plane through the origin

Matrices and rectors



#f A is a mx n matrix ,
and B is a 1x matrix , then product C= AB
is an MXr matrix
. The (i)j) entry of a product is computed an
follows :
Cij = Giz bij + diz bizj + - ... + Gin
buj.
Let A be an Mx1 matrix
. Then , the following statements are


either all true or all false :



& For each b in
M
the equation Ax = b has a volution
,

& Each b in Ah is linear combination of the columns
a
ofA
② The column of
A opan Ru
& A has a pivot position in
every row
.

, Werke 2:

Homogeneous lineur systems
Homogeneous if it can be written an Ax = 0 where o is the zero rector
,

in B

Theorem :



For a
homogenous system with evariables and linear equations , there are



infinitely maysolutions ig m =1

Thus ,
in case there is at least one
free variable ,
then the cyclem
has infinitely many solutions .




#f X1 = -
X g
,
Xz = X 3 and X 3 is
free

The general of Ax = o has the vector solution :
X =

() [) =
=
= (i)
Thus X = X3 v




(di& S () (0) x(i)
X, = 3 -

xy
+
= 1 + xxx
= =
x = -




O O g Xs is free

The X =
p + X 3


Linear independente

Definition :
A V Un linearly independent inf the colution
setogrectors Va Vz is
"
,, , < ,

to the
vector equation X , V1 + X Vz +... + XeUn = 0

hue X1 X2 o solution
Only Xn = as a
, , ....,

Thurs ,
we can also make the definition for linear dependence :



Definition :
A get
of Vector
v
, Ve , ...,
Un is
linearly dependent if there are



Backers XI < +1 ,
-
, with at least one salar not zero ,
such that :


X vi + X2Vz + -. . + Xn Un = 0
€7,96
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
tnmsterk

Maak kennis met de verkoper

Seller avatar
tnmsterk Technische Universiteit Eindhoven
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
2
Lid sinds
3 jaar
Aantal volgers
2
Documenten
3
Laatst verkocht
2 jaar geleden

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen