100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary Experimentation II - Literature/Lectures

Beoordeling
-
Verkocht
4
Pagina's
15
Geüpload op
13-06-2019
Geschreven in
2018/2019

This is an overview of the Experimentation II course. The focus is on the lectures, but the essence of the papers that were discussed in class is also covered. The poster session is not part of this document.










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
13 juni 2019
Aantal pagina's
15
Geschreven in
2018/2019
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Experimentation II – Literature & Lecture Slides
General Introduction
Invasiveness Technique
Invasive -Single cell recordings -Deep brain stimulation
-Brain surgery -Pharmacology
-Electro-convulsive therapy
Somewhat invasive -PET -CT
-regional cerebral blood flow (rCBF) -rTMS

Non-invasive -Single pulse TMS -Peripheral recordings
-EEG -Saliva checks
-MEG -Neural network modeling
-Optical imaging -Behavioral genetics
-(f)MRI -Affect/Mood induction
-Eye tracking -Circadian rhythm



Temporal and Spatial Resolution of some different neuroscientific techniques




Functional analysis (EEG/ERP)
Woodman & Lecture slides
Electro-encephalography
When a neuron excites another neuron, excitatory neurotransmitters attach to the postsynaptic
dendritic receptors. This causes the receptors to open and current will flow into the postsynaptic neuron
cell body, creating a negativity around the synaptic cleft and the dendrite. Simultaneously, current flows
outside of the postsynaptic cell body, resulting in positivity there. This contrast between the positivity
and negativity so close to each other is referred to as a dipole. If this signal is strong, lasts long enough,
has the right orientation and synchronicity, it can be picked up by EEG electrodes. Subcortical structures
cannot be picked up on by EEG.

, The electrical activity in the brain is never
random. EEG mostly picks up on distinct rhythms
of oscillations (= rhythmic waves in electrical
current) which vary in frequency (slow-fast | 0-70
Hz), amplitude (low-high | -50 – 50 mV), phase
(in the sine cycle | 0-360 degrees) and timing.
Specific oscillations have been identified and
related to specific behaviors (e.g., alpha waves
are related to relaxation). EEG can identify the
location (topography) of the signal, although it is
not very spatially specific. You can also model the
source of the signal as a dipole.



The raw EEG signal is a sum of all the frequencies that are being picked up in that area. Fourier
transformation can split this sum back up into its part, allowing us to study the different frequencies
separately.
Different oscillations can show coherence or synchronization, which often reflects communication
between brain areas. Slower waves can carry faster waves to travel further along the brain.

When measuring EEG you always have to have reference electrodes which you can use to subtract noise
from your signal. Which reference place you choose can influence your results. You can place them
somewhere on the body (mastoids, nose, earlobes, shoulder) or you can take the average of all your
electrodes and subtract that.

The electric signal that is being picked up is referred to as a brain potential. Thus, an EEG session results
in a long time series of brain potentials on all the places the electrodes have been put. EEG signals that
occur systematically and synchronous to a meaningful event (e.g., presentation of a stimulus, or
moment of response) are called event-related potentials (ERPs).

ERPs are extremely small. All brain potentials have to be amplified before they can be digitized and
shown on a computer screen. However, because they are so small they are also very easily drowned by
noise. It is therefore very important that you take precautions to avoid noise and filter out noise during
analysis (prevention is better).

Maximize signal:
 Minimize skin impedance by scratching the skin with a blunt needle
 Maximize conductivity by using electrode gel
 Acquire enough trials
 Always check your set-up (broken electrodes)
Minimize noise:
 Put electrodes around the eyes so you can correct for eye movement during analysis
 Guard your experimenting room from power sources (e.g., elevators, new computers)
 Minimize motion
 Check that your electrodes are adequately connected
 Make sure the cap is in the right location
 Keep the experimenting room cool to avoid sweating
Cleaning EEG data

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
MaaikePsy Universiteit Leiden
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
290
Lid sinds
9 jaar
Aantal volgers
213
Documenten
58
Laatst verkocht
6 maanden geleden

3,6

55 beoordelingen

5
11
4
21
3
16
2
3
1
4

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen