100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4,6 TrustPilot
logo-home
Samenvatting

Samenvatting Statistiek 1 Semester 2

Beoordeling
4,0
(2)
Verkocht
8
Pagina's
28
Geüpload op
07-06-2019
Geschreven in
2018/2019

Deze samenvatting is gemaakt op basis van de powerpoint uit de lessen en het boek Statistisch gezien.

Instelling
Vak










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Gekoppeld boek

Geschreven voor

Instelling
Studie
Vak

Documentinformatie

Heel boek samengevat?
Nee
Wat is er van het boek samengevat?
H8, h9, h10, h11, h12, h13, h14
Geüpload op
7 juni 2019
Aantal pagina's
28
Geschreven in
2018/2019
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

HOOFDSTUK 8: MAYBE YES, MAYBE NO


8.1 Basisbegrippen
 Stochastisch proces of toevalsproces of kansexperiment : een proces waarvan de uitkomsten
onzeker zijn.

 Toevalsgebeuren/gebeurtenis: specifieke uitkomst(en) van een stochastisch proces

o Elementaire ~ of een singleton: slechts 1 uitkomst
Opgooien van een eerlijke dobbelsteen en registreren van het aantal ogen: A = {1}

o Samengestelde ~: heeft betrekking op meerdere elementaire toevalsgebeurens
Het gooien van een even aantal ogen met een eerlijke dobbelsteen: B = {2, 4, 6}

 Uitkomstenruimte S: verzameling van alle mogelijke uitkomsten van een kansexperiment
Opgooien eerlijke dobbelsteen en registreren van het aantal ogen: S={1, 2, 3, 4, 5, 6}

 Deterministisch proces: een proces waarvan de uitkomst van vooraf al vast staat.

 Unie van twee verzameling A en B (A ∪ B) : verzameling waarbij alle elementen ofwel in A,
ofwel in B ofwel in beide verzamelingen zitten. Je voegt alle elementen van A en B samen tot
een nieuwe verzameling en je haalt de dubbels eruit.
A= {a, b c, d, e} en B= {a, e, i, k, s, t} dan (A ∪ B)= {a, b c, d, e, i, k, s, t}

 Doorsnede (A∩ B) : verzameling die bestaat uit alle elementen die zowel in A als in B zitten.
A = {1, 2} B = {oneven}; A ∩B = {1}

 Disjuncte verzameling/gebeurtenissen (A∩ B = ∅ ) : verzamelingen die geen
gemeenschappelijke elementen hebben.

 Lege vrzameling ∅ : de lege verzameling is een deelverzameling van alle verzamelingen
A = {1} B = {2, 4, 6}

 Deelverzameling A c B

 Complement van A (Ac of Á = S \ A) : alle uitkomsten die niet in A zitten
A = {1} Á = {2, 3, 4, 5, 6}

 Verschil van twee verzamelingen A en B (A \ B = {…} ) : alle elementen van A die niet in B
zitten. We vertrekken van verzameling A en halen alle elementen die ook in B zitten eruit.
A= {a, b c, d, e} en B= {a, e, i, k, s, t} dan (A\B)= {b, c, d}

 Machtsverzameling M(S) : een verzameling die als elementen opnieuw verzamelingen heeft.
Of, een combinatie van alle mogelijke elementaire gebeurtenissen en alle samengestelde
gebeurtenissen.
S= {1, 2, 3}  M(S)={Ø,{1},{2},{3},{1,2},{1,3}, {2,3},{1,2,3}}  23 = 8 deelverzamelingen
Als #S = n , dan #M(S) = 2n . Dus indien verzameling S in totaal n verschillende elementen
bevat, dan is het mogelijk 2n deelverzamelingen te maken

, Partitie of volledig stelsel: Stel je verdeelt uitkomstenruimente in verschillende delen, dan
moeten de elementen voldoen aan twee voorwaarden
* exhaustief: (G1 ∪ G2 ∪ G3 = {1,2,3,4,5,6} = S)
De elementen zitten in één van de gebeurtenissen
* twee aan twee disjunct: (doorsnedes zijn leeg)
Er is geen overlap tussen de gebeurtenissen, en uitkomst zit niet in meer dan één
gebeurtenis

8.2 Kansdefinitie
 Kans P(G): drukt uit hoe (on)waarschijnlijk een gebeurtenis G is. De kans P is een functie die
elke gebeurtenis G uit een machtsverzameling M(s) een reëel getal P(G) tussen 0 en 1
associeert

o Subjectieve kansdefinitie of de gokkans: intuïtie, ervaringen
De kans op de lotto winnen is erg klein, denk je uit je eigen ervaring nog ooit
gewonnen te hebben

o Empirische kansdefinitie zweetkans: wet van de grote aantallen. Heel vaak een
experiment uitvoeren. Als je het experiment oneindig aantal keer uitvoert, dan wordt
fi
de relatieve frequentie meer juist benaderd: P ( A )=lim
n→∞ n
fi
Vaak P = berekenen --> benadering voor kans. Je moet dan kijken waarde
n
waarden naartoe gaan als n toeneemt. De limietwaarde us de gezochte kans.
Kans om twee te gooien bij eerlijke dobbelsteen, dan moet je heel vaak (oneindig) de
dobbelsteen opwerpen, om een heel goede benadering te komen.

¿ A ¿ gunstige
o Theoretische kansdefinitie van Laplace of weetkans: P( A)= =
¿ S ¿ mogelijke
! Let op, Laplace veronderstelt dat elke uitkomst even plausibel is (kansverdeling van
elementaire gebeurtenissen is uniform).
Kans op gooien van een twee bij eerlijke dobbelsteen : P({2}) = 1/6
#gunstige uitkomsten: 1 en #mogelijke uitkomsten: 6

 3 basisregels (axioma’s) waaraan reële functie P moet voldoen bij zowel de empiriche als de
theoretische kansdefinitie:

1. 0 ≤ P(A) ≤1

2. P(S) = 1 De som van alle kansen is 1. Er zijn geen andere uitkomsten mogelijk dan
die uit de uitkomstenruimte

3. Als A en B disjuncte gebeurtenissen zijn (A ∩ B = ø), dan geldt dat:
P (A U B) = P(A) + P(B)
A= {1 gooien}: P= 1/6 en B= {2 gooien} : P= 1/6  samen P= 1/3

, 8.3 Axiomatische kansregels
REKENREGELS

o Complementregel: P( Á )= 1 - P(A)
Kans dat iemand niet op VLD stemt: 1 - kans dat iemand op VLD stemt
P(A) := P(stemmen op VLD)= 50/250 = 0.2  P( Á )= 1-0.2 = 0.8

o Somregel: * A en B disjunct: P (A U B) = P(A) + P(B)
Kans op een A= PVDA-kiezer of een B= man, deze gebeurtenissen zijn disjunct: er zijn
geen uitkomsten die man én PVDA zijn (∅ ¿
122 2 120
P(A U B) = P(A) + P(B) = =0.49= + (zie tabel p. 308)
250 250 250
* A en B niet disjunct: P(A U B)= P(A) + P(B) - P(A ∩ B)
Kans op A= AGALEV-kiezer of een B= vrouw
P(A U B) = (88/250) + (130/250) - (52/250) = 166/250 = 0,67
Omdat het geen disjuncte gebeurtenissen zijn, mag je de gemeenschappelijke
elementen niet dubbel tellen en trek je ze er dus 1X vanaf!

o Productregel: voorwaardelijke kans nodig: A én B, belangrijk onderscheid tussen ‘A
priori’ en ‘A posteriori’.

 A priori – kans: de algemene slaagkans

 A posteriori- kans: de kans op voorwaarde van iets anders, voor een
specifieke subgroep. De voorwaardelijke kans P(A|B): kans op A geg B

Ook belangrijk onderscheid tussen onafhankelijke en afhankelijke
gebeurtenissen!

 ~ bij onafhankelijke gebeurtenissen: P(A ∩ B)= P(A) . P(B)
A= VLD-stemmer ; B= man  P( A ∩ B ) = P(VLD EN MAN )= 24/250 =
0,096 P( A ) = P ( VLD ) =¿50/250 = 0,20; P( B) = P( MAN ) = 120/250 =
0,48
Dus P( A ∩ B ) = P( A ) . P( B) = 0,20 . 0,48 = 0,096

 ~ bij afhankelijke gebeurtenissen: P(A ∩ B)= P(A|B).P(B) of
P(A ∩ B)= P(B|A).P(A)
A= AGALEV-kiezer; B= man  P(A ∩ B) = P(A|B).P (B =(36/120).(120/250)
=0,14 OF P(A ∩ B) = P(B|A).P(A) = (36/88).(88/250) = 0,14

P ( A ∩ B) P ( A ∩ B)
o Regels voorwaardelijke kans: P(A|B) = of P(B|A) =
P(B) P( A)
(uit de productregel gehaald)
A= AGALEV-stemmen B= man
P ( A ∩ B) P ( AGALEV ∩ MAN ) 36 /250 36
P(A|B) = = = = =0,3
P (B) P (MAN ) 120 /250 120
€5,49
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten


Ook beschikbaar in voordeelbundel

Beoordelingen van geverifieerde kopers

Alle 2 reviews worden weergegeven
5 jaar geleden

6 jaar geleden

4,0

2 beoordelingen

5
0
4
2
3
0
2
0
1
0
Betrouwbare reviews op Stuvia

Alle beoordelingen zijn geschreven door echte Stuvia-gebruikers na geverifieerde aankopen.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
manonhoremans Universiteit Antwerpen
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
19
Lid sinds
6 jaar
Aantal volgers
18
Documenten
3
Laatst verkocht
2 jaar geleden

3,8

5 beoordelingen

5
0
4
4
3
1
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen