100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4,6 TrustPilot
logo-home
College aantekeningen

Lecture Notes on Equivalence Relations and Modular Arithmetic (COMP11120)

Beoordeling
-
Verkocht
-
Pagina's
3
Geüpload op
30-05-2024
Geschreven in
2023/2024

Dive into the concepts of equivalence relations and modular arithmetic with these comprehensive lecture notes for COMP11120. Covering key topics such as the properties and applications of equivalence relations, and the fundamentals of modular arithmetic, these notes provide clear explanations and illustrative examples to help you grasp these essential mathematical concepts. Ideal for students enrolled in COMP11120 or anyone looking to enhance their understanding of these topics, these notes are well-organized and concise, making complex ideas more accessible. Boost your learning and excel in your studies with this essential resource!

Meer zien Lees minder
Instelling
Vak








Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Studie
Onbekend
Vak

Documentinformatie

Geüpload op
30 mei 2024
Aantal pagina's
3
Geschreven in
2023/2024
Type
College aantekeningen
Docent(en)
Andrea schalk
Bevat
Equivalence relations and modular arithmetic

Onderwerpen

Voorbeeld van de inhoud

Equivalence Relations and Modular Arithmetic

Binary relations

When consider relations from We show this directed graph
discussing relations have - as
as we seen sometimes , we a set can a as
follows
.

S to itself.


V
Instead of R
saying R from S usually say that binary
is a relation 5 to wo is a
1


relation on S
.

L
>

We can represent binary relations as a directed graph. 2 wh


-v


Y
-
X
Example : Let S = Ev ,
w
,
x
, Y, 2)
Let R be a
binary relation on S where

R ((v =
, w) , (v, x) , (2 , 2), (W , v) , (W , 2) (W x) ( -, ) (2
, , , , , 2)]



Properties of relations


Reflexivity Symmetry Transitivity

Informally a relation is
reflexive if every element
is A relation is symmetric if we can
go from one A relation is transitive if
for all s
,
sin S if there is
related to itself. element to another , then we can also go back
.
a path between two elements s and S' , then there
to s
A
binary relation R On a set S is symmetric if and only
is an
edge from s
A binary relation R is reflexive if and
only if for all
if we have for all s, s'ES if (5 5) ER ,
,
then
SES , (5 3) EIR (s' 5) R A relation R S transitive if
E
binary set is and only if
,
,
On a we


have for all s'ES if (5 5) ER s, ,
and (sis") ER
,
then 15 S") ER
,
.
We have
already seen that the identify relation for a Example : The binary relation Ron S =
Ev ,
w
,
x
, y, 2)
set S defined shown is not symmetric (v , X) ER ,




s
is as as

but (X , v) R There are other pairs

((5 5) SxSses]
.




Ig = ,
missing also


V
1



A binary relation R on S is reflexive if and
only if




"
Is &R wh Ev 2)
2 [
Example : The binary relation R on S =
,
W
,
X
, y, shown

is not transitive as (V , W) and (W , v) are in the

relation ,
but (v , v) is not.


Example : The binary relation R on S =
Ev ,
w
,
x
, y, 2) Y
shown is not reflexive as (v , v) &R
,
V
(W w),
R, and (y Y) # R
,
. 1




Symmetric Closure of a
Binary Relation
L
>

V 2 wh
The
symmetric
[
closure allows us to take a relation and
1


add a minimum number of pairs to make it

symmetric .
·
L
>

2 wh Y
Recall that the opposite relation for a
binary
relation R on a set S is defined as


Y · Rop =
((5; 3) =Sx 5/(s s) ,
ER] Transitive Closure of a
Binary Relation

The transitive closure allows us to take a relation and
add number of to make it
Reflexive
a minimum pairs
Closure of a
Binary Relation The symmetric closure of the binary relation R on the
transitive.
Set S is
given by
The reflexive closure allows us to take a relation and
add it The transitive closure of the binary relation R on the set
a minimum number of pairs to make reflexive .


RuRO = Rud(sis)eSxS((s 5) , E
R] S is
given by adding the set of pairs (Si , Sul to R
where S1 , S2 Sn ins with n = 2 such that for
The reflexive closure of R by , ...


is
given
all 1 i < n-1 we have (Si , Sin1) ER
seS]
.




Rulg =
Ru((s s) ,
If a relation R is both reflexive and symmetric ,

We can represent it as an Undirected Graph

A

i V




Z
·


su 3 2 W




y? · Y X
€9,49
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
jpxoi

Ook beschikbaar in voordeelbundel

Maak kennis met de verkoper

Seller avatar
jpxoi The University of Manchester
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
0
Lid sinds
1 jaar
Aantal volgers
0
Documenten
20
Laatst verkocht
-

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen