100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Samenvatting 'Medische fysica' van A. van Oosterom (H8)

Beoordeling
4,0
(1)
Verkocht
7
Pagina's
8
Geüpload op
05-05-2019
Geschreven in
2018/2019

Dit is een samenvatting van hoofdstuk 8 paragraaf 1 t/m 6 uit het boek Medische fysica van A. van Oosterom en T.F. Oostendorp. Deze samenvatting is gemaakt voor het vak Natuurkunde en gezondheid bij de studie MNW.










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Heel boek samengevat?
Nee
Wat is er van het boek samengevat?
H8 paragraaf 1 tot en met 6
Geüpload op
5 mei 2019
Aantal pagina's
8
Geschreven in
2018/2019
Type
Samenvatting

Voorbeeld van de inhoud

Medische fysica H8:Stralingsfysica §1-6
Belangrijke begrippen Formules Constante waardes


8.1 Inleiding
Röntgenstraling= de elektromagnetische straling (EM-straling) die wordt opgewekt door het
beschieten van materialen van een bundel snelle elektronen. Het onderscheid zich van zichtbaar licht
door een veel hogere energie per foton. Het heeft hierdoor een grote mate van doordringbaarheid
door materialen.
Excitatie/aanslag= het overbrengen van een elektron naar een hoger energieniveau binnen het
atoom, dit noem je dan een aangeslagen atoom. Dit zorgt voor chemische veranderingen.
Ionisatie= het verwijderen van een elektron uit het atoom. Zowel een ion als een aangeslagen atoom
zijn instabiel. Meestal vangt een ion na korte tijd (10^-8 s) weer een elektron n=in, waarbij het
aangeslagen atoom snel terug keert in de grondtoestand. Beide processen kunnen gepaard gaan met
het uitzenden van EM-straling.


8.2 Elektromagnetische straling
EM-straling heeft een golfkarakter. De velden veranderen sinusvormig in de tijd met een frequentie f
(het aantal trillingen per seconde). De voortplantingssnelheid c van dit fenomeen is voor alle
c 1
frequenties gelijk: c= 3*10^8 m/s. Relatie: λ= en T = .
f f

Fotonen
Wanneer een groot aantal fotonen in 1 richting bewegen in de totale werking een golfbeweging. De
energie wordt gegeven door: E =hf . Waarbij h de constante van Planck is
foton

(h=6.6*10^-34 Js).
Foto-elektrisch effect: Hierbij valt EM-straling (licht) met een frequentie f (kleur) op
een metalen plaat. Deze plaat is geplaatst in een vacuümgezogen glazen omhulsel.
Experimenteel blijkt fat wanneer f voldoende groot is, een stroom gaat lopen tussen
E E
deze plaat en een 2e elektrode die ook in het omhulsel is geplaatst. Er geldt: n= =
E foton hf
. Waarbij n het aantal fotonen, E de totale energie en Efoton de energie van 1 foton.
hf E foton
Een foton heeft rustmassa 0, snelheid c en impuls P. Hiervoor geldt: P= = .
c c

Interactie fotonen:

- hoe hoger de energie, hoe kleiner de kans op interactie
- de kans in een arena is klein, want er is veel ruimte. Maar er zijn veel atomen, dus de kans is
groot > moeilijk iets over te zeggen
- patiënt: een deel van de fotonen gaan door de patiënt heen, een ander deel doet ‘iets’

, - Een elektron hoeft niet perse een ander elektron te raken om te interacteren (Door lading
worden elektronen afgebogen (er werkt een kracht), dus verliezen ze energie). Een foton
buigt niet af en moet het elektron precies raken. Na interactie is het foton verdwenen,
daarna gebeurt er niks meer. Bij elektronen kan er een cascade ontstaan.

- Elektronen komen niet door het lichaam heen, dus dit is niet handig bij een foto maken & je
krijgt veel ruis. Fotonen zijn beter om te gebruiken: gaan wel door het lichaam heen, een
geven geen ruis. Je moet hierbij wel kiezen tussen fotonen met een hoge energie (komen
beter door het lichaam heen) en een lage energie (grotere kans op botsing met bv bot).

Het golfgedrag van bewegende deeltjes
EM-straling kan worden beschreven via fotonen (energie pakketjes) als in termen van buiging
(golfverschijnsel). Dit feit wordt de ‘dualiteit’ tussen straling en materie genoemd. De golflengte van
h
deze straling hangt samen met de impuls (p=mv). Dit geeft: λ= .
p

Het kwantificeren van straling
Eenheid van energie is Joule, maar nu wordt er elektronvolt gebruikt. 1eV= 1.6*10^-19 J. Ook wordt
er gebruik gemaakt van keV (10^3) en MeV (10^6).

Intensiteit en spectrum; kwadratenwet
Voor de intensiteit van straling wordt I gebruikt. Dit is de energie in de stralenbundel die per seconde
een eenheid van oppervlakte passeert. Bij deeltjesstraling wordt ook de grootheid flux gebruikt: het
aantal deeltjes dat per seconde een eenheid van oppervlak passeert. De intensiteit (bij een bol)
P
wordt gegeven door: I = . Waarbij R de afstand tot de bron en P het totale vermogen dat door
4 π R2
de bron wordt uitgezonden. Wanneer de afstand R groot is t.o.v. de afmetingen van de bron, mag de
bron als puntbron worden opgevat. Hieruit blijkt dat de intensiteit omgekeerd evenredig is met het
kwadraat van de afstand tot de (punt)bron =kwadratenwet.
Mono-energetisch/ monochromatisch= wanneer een bundel straling samengesteld is uit fotonen met
dezelfde energie (dit is meestal niet het geval).
Spectrum= een uitzetting van de intensiteit van straling (x-as) rond een energiewaarde E, als functie
van die waarde E (y-as). Het oppervlakte onder de spectraal kromme is gelijk aan de totale intensiteit
van de straling in (W/m^3).


8.3 Opbouw van de materie
Atoombouw
Een atoom bestaat uit een kern omgeven door elektronen (-). De kern bestaat uit neutronen
(ongeladen) en protonen (+). Het aantal protonen in de kern is het atoomnummer (Z). De lading per
proton is +e. De massa van de elektronen is veel kleiner dan de massa van de kern. Elk elektron is
gebonden in het atoom met een bepaalde energie. Om het elektron uit het atoom te verwijderen
moet een minimale energie worden toegevoegd (=bindingsenergie). Eigenschappen bindingsenergie:

- De bindingsenergie is het grootst voor een elektron dat zich dicht bij de kern bevindt.
- De bindingsenergie wordt groter naarmate de kernlading groter is en dus wanneer Z groter
is.

Beoordelingen van geverifieerde kopers

Alle reviews worden weergegeven
4 jaar geleden

4,0

1 beoordelingen

5
0
4
1
3
0
2
0
1
0
Betrouwbare reviews op Stuvia

Alle beoordelingen zijn geschreven door echte Stuvia-gebruikers na geverifieerde aankopen.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
boekentijger Vrije Universiteit Amsterdam
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
184
Lid sinds
7 jaar
Aantal volgers
128
Documenten
51
Laatst verkocht
6 maanden geleden
Samenvattingen en meer!

Ik bied mijn samenvattingen, hoorcollege aantekeningen, etc. van vakken aan die worden gegeven tijdens de studie Medische natuurwetenschappen en de minor 5 big issues in health aan de Vrije Universiteit Amsterdam! I also have English summaries for the master Biomedical Engineering given at Eindhoven University of Technology.

3,7

29 beoordelingen

5
3
4
18
3
6
2
1
1
1

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen