100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Overig

Analyse - Cours et exercices sur ( Suites - Séries - Intégrales )

Beoordeling
-
Verkocht
-
Pagina's
175
Geüpload op
10-05-2024
Geschreven in
2020/2021

Analyse - Cours et exercices sur ( Suites - Séries - Intégrales )

Instelling
Vak











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Vak

Documentinformatie

Geüpload op
10 mei 2024
Aantal pagina's
175
Geschreven in
2020/2021
Type
Overig
Persoon
Onbekend

Onderwerpen

Voorbeeld van de inhoud

Suites, Séries, Intégrales
Cours et exercices

Sylvie Guerre-Delabrière
Professeur à l’Université Pierre et Marie Curie

,
, Table des matières



1 Quelques éléments de logique 1
1.1 Lettres grecques et symboles mathématiques . . . . . . . . . . . . . . . . 1
1.2 Implications [A ⇒ B] et équivalences [A ⇐⇒ B] . . . . . . . . . . . . . 1
1.3 Intersection et réunion . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Quantificateurs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5 Ordre des quantificateurs . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.6 Négation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.7 Raisonnement par récurrence . . . . . . . . . . . . . . . . . . . . . . . . 5
1.8 Bornes supérieures et bornes inférieures dans R. . . . . . . . . . . . . . . 5
1.9 Exercices sur le chapitre 1 . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.10 Corrigé des exercices sur le Chapitre 1 . . . . . . . . . . . . . . . . . . . 7

2 Suites et Séries Numériques 11
2.1 Suites numériques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Limites dans R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 Séries numériques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.4 Séries à termes positifs . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.5 Séries à termes quelconques . . . . . . . . . . . . . . . . . . . . . . . . 34
2.6 Opérations sur les séries . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.7 Exercices sur le chapitre 2 . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.8 Corrigé des exercices sur le Chapitre 2 . . . . . . . . . . . . . . . . . . . 42

3 Intégrale de Riemann et intégrale généralisée 47
3.1 Intégrales des fonctions en escalier . . . . . . . . . . . . . . . . . . . . . 47
3.2 Fonctions intégrables, intégrale de Riemann . . . . . . . . . . . . . . . . 49
3.3 Primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.4 Calcul des primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.5 Intégration d’un produit de fonctions . . . . . . . . . . . . . . . . . . . . 59
3.6 Méthodes d’approximation numérique des intégrales . . . . . . . . . . . 61
3.7 Définition des intégrales généralisées . . . . . . . . . . . . . . . . . . . . 65
3.8 Intégrales généralisées des fonctions positives. . . . . . . . . . . . . . . . 68
3.9 Intégrales généralisées des fonctions ne gardant pas un signe constant . . 70
3.10 Exercices sur le chapitre 3 . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.11 Corrigé des exercices sur le Chapitre 3 . . . . . . . . . . . . . . . . . . . 74

4 Suites et séries de fonctions 79
4.1 Convergence simple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.2 Convergence uniforme . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.3 Continuité des limites et des sommes
pour la convergence uniforme . . . . . . . . . . . . . . . . . . . . . . . 85

i

, ii Table des matières


4.4 Dérivabilité des limites et des sommes
pour la convergence uniforme . . . . . . . . . . . . . . . . . . . . . . . 87
4.5 Intégration des limites et sommes pour la convergence uniforme . . . . . 90
4.6 Exercices sur le chapitre 4 . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.7 Corrigé des exercices sur le Chapitre 4 . . . . . . . . . . . . . . . . . . . 93

5 Séries entières 97
5.1 Définitions et disque de convergence . . . . . . . . . . . . . . . . . . . . 97
5.2 Opérations sur les séries entières . . . . . . . . . . . . . . . . . . . . . . 100
5.3 Dérivation et intégration des séries entières . . . . . . . . . . . . . . . . 102
5.4 Développement en série entière à l’origine . . . . . . . . . . . . . . . . . 104
5.5 Développement en série entière des fonctions usuelles . . . . . . . . . . . 107
5.6 Fonction exponentielle complexe . . . . . . . . . . . . . . . . . . . . . . 109
5.7 Exercices sur le chapitre 5 . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.8 Corrigé des exercices sur le Chapitre 5 . . . . . . . . . . . . . . . . . . . 113

6 Séries trigonométriques 119
6.1 Définitions et convergence . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.2 Continuité, dérivation et intégration de la somme . . . . . . . . . . . . . 122
6.3 Développement en séries trigonométriques . . . . . . . . . . . . . . . . . 124
6.4 Exercices sur le chapitre 6 . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.5 Corrigé des exercices sur le Chapitre 6 . . . . . . . . . . . . . . . . . . . 134

7 Intégrales de Riemann dépendant d’un paramètre 139
7.1 Théorème de convergence bornée . . . . . . . . . . . . . . . . . . . . . . 139
7.2 Continuité de l’intégrale de Riemann . . . . . . . . . . . . . . . . . . . . 139
7.3 Dérivabilité de l’intégrale de Riemann . . . . . . . . . . . . . . . . . . . 141
7.4 Cas où les bornes d’intégration dépendent du paramètre . . . . . . . . . . 143
7.5 Exercices sur le chapitre 7 . . . . . . . . . . . . . . . . . . . . . . . . . 145
7.6 Corrigé des exercices sur le Chapitre 7 . . . . . . . . . . . . . . . . . . . 146

8 Intégrales généralisées dépendant d’un paramètre 149
8.1 Théorème de convergence dominée . . . . . . . . . . . . . . . . . . . . . 149
8.2 Continuité de l’intégrale généralisée . . . . . . . . . . . . . . . . . . . . 150
8.3 Dérivabilité . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
8.4 Application : transformée de Laplace . . . . . . . . . . . . . . . . . . . . 155
8.5 Exercices sur le chapitre 8 . . . . . . . . . . . . . . . . . . . . . . . . . 159
8.6 Corrigé des exercices sur le Chapitre 8 . . . . . . . . . . . . . . . . . . . 162

Bibliographie 169

Index 170

Index 170
€3,08
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
aminall000

Maak kennis met de verkoper

Seller avatar
aminall000 Higher National School of Nano science and Nano technology
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
4
Lid sinds
1 jaar
Aantal volgers
2
Documenten
60
Laatst verkocht
1 jaar geleden
Courses + Exercices || cours + exercices

Solved exercices ,Summaries and Courses about the field of Science-technology that countain modules : Analysis Algebra Probability statistics Physics Chimestry English French Economics Human engineer Computer science i will upload all the folders for help you BY a low price and sometimes i give some folders for free Courses BY english and French the first folders are

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen