100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary - Brain, behavior and movement

Beoordeling
3,9
(13)
Verkocht
41
Pagina's
105
Geüpload op
11-02-2019
Geschreven in
2017/2018

This summary contains all the cases and lectures of BBS-1004: Brain, behaviour and movement. The summary contains a lot of detail, clear explanations, nice pictures and schemes. The following topics are covered: Neurons, action potential, neurotransmitters, receptors, synapse, muscle, muscle contraction, force/torque, force velocity curve, EMG, motor control, Parkinson's disease, DBS, Proprioception, vestibular system, cerebellum, Hick-hyman law, reaction time, decision making, eye, retina, herman Grid, nociceptive system, gate control, NMDA receptor, memory, learning, stress, HPA axis and the Papez circuit. The summary is perfect to use as preparation for the exam.

Meer zien Lees minder











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
11 februari 2019
Aantal pagina's
105
Geschreven in
2017/2018
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

CASE 1
1. What is the structure of neurons and what types are there? (brief)

Roughly, there are three types of neurons:
• Sensory neurons
• Motor neurons
• Intermediate neurons
The sensory neurons and motor neurons also
consist of many different sorts, which can be
classified based on a lot of different
characteristics. For example based on their
number of neurites:
You can have uni-, bi- or multipolar neurons.



A neuron exists of a cell body, also called the soma or
the perikaryon and some neurites.
→ The soma consists of a nucleus and several other
organelles like: ER, Golgi apparatus, ribosomes,
mitochondria and microtubules.
→ There are two sorts of neurites:
1. Axons → They carry action potentials further
away from the soma, they take care of output.
There is most of the time only one axon per
neuron. Axons are pretty long.
2. Dendrites → They carry action potentials to
the soma, they take care of input. There are a
lot of dendrites per neuron which are mostly
really short (<2mm).

At the end of axons, you find the axon terminal. Here,
the axons gets in contact with the dendrites from other
neurons, which is called the synapse. An axon can have
more branches which all lead to their own synapse.
In this axon terminal:
• Are no microtubules
• It contains a lot of synaptic vesicles,
which are small bubbles of membrane.
• Contains a lot of mitochondria.

The synapse always exists of two sides:
The presynaptic (axon) and postsynaptic
(dendrite/soma). Between these two membranes
lies the synaptic cleft.

Around the neuron, a neuronal membrane
exists. This membrane consists of a lot of
proteins, e.g. proteins that can carry substances
in and out of the neuron. The protein composition
of the membrane varies on the place in the
neuron (soma, dendrites, axon).

, A neuron has a pretty characteristic shape, which is formed by the
cytoskeleton. This cytoskeleton exists of three sorts of ‘bones’ which
are:
• Microtubules → they run longitudinally down neurites. A
microtubule is formed out of lots of the same protein called tubulin.
• Microfilaments → Are found everywhere in the neuron. Made
out of polymers of actin.
• Neurofilaments → These are also intermediate filaments but in
neurons they are called this.




Another important thing about neurons is that
they are most of the time accompanied by glial
cells. In the case of action potential conduction,
Schwann cells and oligodendroglia play an
important role. These form myelin sheets over
the neurites of neurons, to fasten the conduction.




2. How is an action potential (AP) formed?

An action potential lasts about 2 (msec.) and consists of different phases:
1. Rising phase → A rapid depolarization of the membrane → When the inside of the
membrane has a negative electrical potential, there is a large driving force on N+ ions.
Therefore, Na+ ions rush into the cell through the open sodium channels, causing the
membrane to rapidly depolarize.

2. Overshoot → Part where the inside of neuron is positively charged with respect to
outside → Because the relative permeability of the membrane greatly favors sodium,
the membrane potential goes to a value close to ENa, which is greater than 0 mV.

3. Falling phase → Rapid repolarization until the membrane is more negative than
resting potential → Two channels are involved in this phase:
a. First, the voltage-gated sodium channels inactivate.
b. Second, the voltage-gated potassium channels finally open (triggered to do so
1 msec earlier by the depolarization of the membrane). There is a great
driving force on K+ ions when the membrane is strongly depolarized.
Therefore, K+ ions rush out of the cell through the open channels, causing the
membrane potential to become negative again.

4. Undershoot / After-hyperpolarization → The last part of the falling phase → The
open voltage-gated potassium channels add to the resting potassium membrane
permeability. Because there is very little sodium permeability, the membrane potential

, goes toward EK, causing a hyperpolarization relative to the resting membrane
potential until the voltage gated potassium channels close again.

5. Absolute refractory period → Gradual restoration of the resting potential → Sodium
channels inactivate when the membrane becomes strongly depolarized. They cannot
be activated again, and another action potential cannot be generated, until the
membrane potential goes sufficiently negative to deinactivate the channels.

6. Relative refractory period → Hyperpolarization → The membrane potential stays
hyperpolarized until the voltage-gated potassium channels close. Therefore, more
depolarizing current is required to bring the membrane potential to threshold.




Here, the threshold is the critical level of depolarization of a membrane that must be
crossed in order to trigger an action potential.
→ This depolarization can be caused by different things.
• Mostly by Na+ influx in channels sensitive to neurotransmitters.
• By injecting electrical current through a microelectrode.

, In a neuron, there are sodium and potassium channels and a sodium-potassium-pump,
which are responsible for generating an action potential. Via influx and efflux of Na+ and K+
the Vm will change:

The channels seen in the pictures above are also called voltage-gated sodium channels
and voltage-gated potassium channels. These are both pretty complex mechanisms:

Voltage-gated sodium channels
→ These are channels that are highly selective to Na+ ions. They can be opened or
closed by changing the electrical potential of the membrane (Vm)

Structure
The channel is made out of a single (long) polypeptide, which has four domains (I-IV).
The domains are together in a way, that they form a closed pore. Each domain
consists of 6 alpha helices (S1-6). S4 contains a voltage sensor and the pore loop
which, together with the 3 other pore loops is called the selectivity filter.
€5,99
Krijg toegang tot het volledige document:
Gekocht door 41 studenten

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Beoordelingen van geverifieerde kopers

7 van 13 beoordelingen worden weergegeven
8 maanden geleden

9 maanden geleden

9 maanden geleden

2 jaar geleden

3 jaar geleden

3 jaar geleden

4 jaar geleden

3,9

13 beoordelingen

5
4
4
4
3
5
2
0
1
0
Betrouwbare reviews op Stuvia

Alle beoordelingen zijn geschreven door echte Stuvia-gebruikers na geverifieerde aankopen.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
veravalckx Maastricht University
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
159
Lid sinds
7 jaar
Aantal volgers
119
Documenten
0
Laatst verkocht
1 maand geleden

4,1

36 beoordelingen

5
14
4
14
3
7
2
1
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen