100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary Cheat Sheet - Natural Language Generation (INFOMNLG)

Beoordeling
-
Verkocht
-
Pagina's
5
Geüpload op
09-04-2024
Geschreven in
2023/2024

This cheat sheet contains the most important information from the course and refers to pages in the full summary for extra details. Everything is clearly highlighted.










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
9 april 2024
Aantal pagina's
5
Geschreven in
2023/2024
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Cheat Sheet NLG
 Strategic choices: what to say (based on input, knowledge, target language)
 Tactical choices: how to say it (dependent on language)

Classic pipeline for NLG and its subtasks (p3)
 Modular architecture breaks down the main task into sub-tasks, modelling each one separately.
Dominant and classical approach.
 In end-to-end models: no/fewer explicit subtasks.





 Raw, unstructured data  before document planning, add (1) signal analysis - extract patterns
and trends – and (2) data interpretation

“Classic” BabyTalk system(p5)
 Classic systems vs Contemporary models (p7): tension between control and fluency

NLG subtasks in more detail – image to caption (p7)

NLG as (cognitive) modelling of language (p10)
 Production errors
 Syntax errors  spreading activation; human memory is associative

Levelt’s “blueprint” for the speaker (p11)
 Modularity (p16) and incrementality (p17)






Relationship between blueprint and classic NLG pipeline (p15)
 Conceptual preparation and role of self-perception

How do people identify objects using language? (p17)
 Referring expression is contextually available
 REG more intertwined approach to what to say + how to say it


1

, REG algorithms and the Gricean maxims of conversation (p18)
 Referential form depends on salience of discourse entities and context; salience depends on
o Centering theory (syntactic role)
o Accessibility theory (accessibility/ availability of entity; more = shorter form)
 Older models were deterministic, ML models for human variation

Are REG algorithms cognitively plausible? (p19)
 Cooperative principle; People behave rationally
 Default expectations not fulfilled  implicatures (hidden meaning, not explicitly stated)
 Conversational maxims: Quantity, Quality, Relation, Manner

Choosing the content of definite descriptions (p20)
 Greedy algorithm: most discriminatory property
 Incremental algorithm: what a speaker would be likely to select, using preference order
o + efficient, psycho plausible, accounts for overspecification
o – deterministic; people are not (PRO: use sth fully discriminatory, else preference)
 High scene variation  high eagerness to over specify

Alignment of data and text to train NLG systems (p25)
 Source pairs from web = loosely aligned
 Automatic alignment = more tightly aligned; noisy
 Crowdsource = tighter aligned; expensive, smaller datasets
 Opportunistic data collection favours better represented languages

Data-driven content selection: Learning statistical models to decide what to say ( p26)
 Content selection as classification problem, but: facts have dependencies & poor coherence
 Collective content selection: consider individual preference + probability of linked facts 
optimisation

Using Language Models to decide how to say it (p28)
 N-gram models look at limited no words before predicting next word
 Markov models only look at immediate past state (previous word as only context)
 Long-distance dependencies: challenge for classical LMs
 Overgenerate-and-rank  + capture variation & handles probabilistic linguistic rules -
ambiguity
o HALOGEN Input: recursive, order-independent, contains grammatical and/or
semantic elements. Recasting helps convert between different representations within it
o HALogen Base Generator rules: recasting, ordering, filling, morphing
o Output: forest of trees represents all possible realisations, ranked using a pretrained LM

Rational Speech Act (RSA) model (p34)
 Cooperative language use; utility-based reasoning
 Pragmatic inference; iterative process
 Pragmatic speaker chooses utterance based on expected utility  utility = surprisal – cost
(speakers’ effort to avoid ambiguity)
 Utility-based reasoning: informative but not overly verbose (= greedy algorithm)

Combining computer vision and NLG: Reference in the ReferIt Game ( p38)
 Model calculates correct colour for an obj in a scene by analysing colour histograms

Short introduction to Feedforward neural networks (p41)
 Type of NN that accepts a fixed-size input and compute a predicted value




2

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
IsabelleU Universiteit Utrecht
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
133
Lid sinds
4 jaar
Aantal volgers
86
Documenten
34
Laatst verkocht
4 weken geleden

3,8

4 beoordelingen

5
2
4
0
3
1
2
1
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen