100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4,6 TrustPilot
logo-home
Samenvatting

Summary Stochastic Models RUG

Beoordeling
-
Verkocht
-
Pagina's
29
Geüpload op
05-04-2024
Geschreven in
2023/2024

A summary containing all theorems, propositions and other important subjects from the book 'Introduction to Probability Models' chapters 1-7 and chapter 9. This is the exactly what students from the RUG need to study for the exam of Stochastic Models.

Meer zien Lees minder










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Heel boek samengevat?
Nee
Wat is er van het boek samengevat?
1-7, 9
Geüpload op
5 april 2024
Aantal pagina's
29
Geschreven in
2023/2024
Type
Samenvatting

Voorbeeld van de inhoud

Summary Stochastic Models, Chapters 1-7, 9
Carine Wildeboer
April 2024, Rijksuniversiteit Groningen


Chapter 1 · Introduction to Probability Theory
1.2 Sample Space and Events
Sample space, S = {...}: set of all possible outcomes of an experiment.
Event, E = {...}: any subset of the sample space S.

Union, E ∪ F : either in E or F or in both E and F.
Intersection, E ∩ F : all outcomes that are both in E and in F.
Mutually exclusive, EF = ∅: the event consisting of no outcomes. E and F have zero overlap.
S∞
Union of multiple events, n=1 En : the event that consists of all outcomes that are in En for at least
one value of n = 1, 2, .... T∞
Intersection of multiple events, n=1 En : the event consisting of those outcomes that are in all of the events
En , n = 1, 2, ...

Complement, E c : consists of all outcomes in the sample space that are not in E.

1.3 Probabilities Defined on Events
Probability of event E, P (E): for each event E of sample space S, we assume P(E) exists and satisfies the
following:
(i) 0 ≤ P (E) ≤ 1
(ii) P (S) = 1
(iii) For any sequence of events E1 , E2 , ... that are mutually exclusive, that is, En Em = ∅ when n ̸= m, then:

[ ∞
X
P( En ) = P (En )
n=1 n=1

Inclusion-exclusion identity: the probability of the union of n events equals the sum of the probabilities of
these events taken one at a time minus the sum of the probabilities of these events taken two at a time plus the
sum of the probabilities of these events taken three at a time, and so on. For any n events E1 , E2 , E3 , ..., En
X X X
P (E1 ∪ E2 ∪ · · · ∪ En ) = P (Ei ) − P (Ei Ej ) + P (Ei Ej Ek )
i i<j i<j<k
X
− P (Ei Ej Ek El )
i<j<k<l

+ · · · + (−1)n+1 P (E1 E2 · · · En )

1.4 Conditional Probabilities
Conditional Probability, P (E|F ): the probability that E occurs, given that F occurs:
P (EF )
P (E|F ) =
P (F )

1

,1.5 Independent Events
Independence: when the occurrance of F has no effect on E, E and F are independent if:

P (EF ) = P (E)P (F ) ⇒ P (E|F ) = P (E)

Or for multiple events:
P (E1′ , E2′ , ..., Er′ ) = P (E1′ )P (E2′ ) · · · P (Er′ )
Independent trials: sequence of experiments, each of which results in either ”success” or ”failure”, that are
independent:
n
Y
P (Ei1 Ei2 · · · Ein ) = P (Eij )
j=1


1.6 Bayes’ Formula
The probability of the event E is a weighted average of the conditional probability of E given that F has occurred
and the conditional probability of E given that F has not occurred:

P (E) = P (E|F )P (F ) + P (E|F c )(1 − P (F ))

Bayes’ Formula:
P (E|Fj )P (Fj )
P (Fj |E) = Pn
i=1 P (E|Fi )P (Fi )


Chapter 2 · Random Variables
2.1 Random Variables
Random variables: real-valued functions defined on the sample space, can be discrete or continuous.
Indicator random variable for event E:
(
1, if E occurs
I=
0, if E does not occur

Cumulative Distribution Function (cdf ) F (b): the probability that random variable X takes on value less
or equal to b:
F (b) = P (X ≤ b)
Its properties are:

(i) F (b) is a non-decreasing function of b
⇒ P (a < X ≤ b) = F (b) − F (a) ∀a < b,
(ii) limb→∞ F (b) = F (∞) = 1
(iii) limb→−∞ F (b) = F (−∞) = 0

Probability X is strictly smaller than b:

P (X < b) = lim P (X ≤ b − h) = lim F (b − h)
h→0+ h→0+


2.2 Discrete Random Variables
Discrete: random variable can take on at most a countable number of possible values.
Probability mass function, p(a) of X:
p(a) = P (X = a)




2

, If X must assume one of the values x1 , x2 , ..., then:

p(xi ) > 0, i = 1, 2, ...
p(x) = 0, all other values of x

X
Therefore, we have: p(xi ) = 1
i=1

The cdf F can be expressed as: X
F (a) = p(xi )
allxi ≤a


2.2.1 The Bernoulli Random Variable
Trial with either ”success” (X = 1) or ”failure” (X = 0). The pmf function of a Bernoulli random variable X
is given by:

p(0) = P (X = 0) = 1 − p
p(1) = P (X = 1) = p

for some p ∈ (0, 1).

2.2.2 The Binomial Random Variable
If X represents the number of successes in n trials, it has a binomial pmf having parameters (n, p):
 
n i
p(i) = p (1 − p)n−i , i = 0, 1, ..., n
i
where:  
n n!
=
i (n − 1)!i!

2.2.3 The Geometric Random Variable
Independent trials are performed until a success (with probability p occurs. Geometric random variable X is
the number of trials until the first success, the pmf is given by:

p(n) = P (X = n) = (1 − p)n−1 p, n = 1, 2, ...

2.2.4 The Poisson Random Variable
Random variable X is Poisson distributed with parameter λ > 0 if its pmf is:
λi
p(i) = P (X = i) = e−λ , i = 0, 1, ...
i!
Can be used to approximate binomial random variable if n is large and p is small (use λ = np).

2.3 Continuous Random Variables
Probability Density Function, pdf, f (x): a non-negative function, defined for all real x ∈ (−∞, ∞), having
the property that for any set B of real numbers:
Z
P (X ∈ B) = f (x)dx
B

We obtain: Z b
P (a ≤ X ≤ b) = f (x)dx
a
Z a
d
F (a) = P (X ∈ (−∞, a]) = f (x)dx ⇒ F (a) = f (a)
−∞ da

3

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
carinewildeboer Rijksuniversiteit Groningen
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
20
Lid sinds
7 jaar
Aantal volgers
17
Documenten
9
Laatst verkocht
5 maanden geleden

4,0

5 beoordelingen

5
1
4
3
3
1
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen