100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

GIMA Module 5 - Summary exam - All subjects

Beoordeling
4,0
(1)
Verkocht
17
Pagina's
43
Geüpload op
23-11-2018
Geschreven in
2017/2018

Summary about all contents for the exam, including Spatial Analysis, Geodata models, Geodatabases, Python Programming, Spatio-Temporal Modelling, Geodata Dissemination












Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
23 november 2018
Aantal pagina's
43
Geschreven in
2017/2018
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

GIMA Module 5 Summary all themes
1.Spatial Analysis
L: Introduction to (Spatial) Regression Models
Spatial analysis aims to:
- Evaluate how entities are spatially distributed
- Determine the underlying spatial processes
- Analyse the relationships between patterns

The focus here is on spatial entities represented as polygons (e.g. municipalities) or points (e.g
houses) » qualitative and quantitative attributes are attached.


Spatial Autocorrelation (SAC)
Grounds on the First Law of Geography: All things are related, but nearby things are more related
than distant things.
➢ Values observed at one location depend on the values of neighbouring observations.

Positive SAC
Similar values are spatially close-by

Negative SAC
Dissimilar values are spatially close-by

No SAC
Spatially random distribution (geography does not matter)


Spatial Heterogeneity (SH)
Characteristics of a population / sample depends on the absolute location
Patterns vary over space, there are no ‘average places’.


Why does space matter?
➢ Why is it important to know how a pattern is distributed?
- The data is not independent
- SAC has serious consequences for non-spatial statistical analysis » it might result in wrong
conclusions.


Exploratory spatial data analysis
Aims to discover spatial patterns

3 kinds of approaches:
Mapping
- E.g. choropleths
Global methods
Local methods


Global statistics
The spatial characteristics of a pattern are summarized globally
➢ One single number represents the pattern » it approximates an ‘average’ value.

, ➢ Spatial variations cannot be detected
Methods:
- Join Count statistic: for nominal data
- Moran`s I: interval / ratio data
- Geary`s C: interval / ratio data
- Autoregressive models

Step 1: definition of the spatial system
Contiguity (nabijheid) :
Rooks contiguity (touches only the 4 line-sharing polygons) & Queens contiguity (touches all point-
sharing polygons)

K-nearest neighbours:
K closest entities are defined as neighbours, this avoids island effects.

Threshold distance:
Entities within a particular distance (circle area) are defined as neighbours.
➢ E.g. points within 100 meters are defined as neighbours.

Interaction:
Spatial closeness results in similarity. I.e. closer entities have greater influence than more distant
ones.
For example: 1 = full interaction; 0 = no interaction.
Common functions are:
- Inverse distance weighting: wij = 1 / dij
- Squared distance weighting: wij = 1 / dij2
o Relative influence drops off more rapidly.

The W matrix (n x n)
Row standardisation:
Spatial weights are rarely used in their binary form, W is often standardised.
In row standardisation, each weight is divided by the sum of its row. So each row sums up to 1.
This allows comparison between parameters.

Step 2: select a statistic
Moran’s I
Moran’s I tests for global spatial autocorrelation:
“Are (dis)similar values in close proximity to each other or are they randomly distributed?”
The range is from + 1 (Positive SAC) to - 1 (Negative SAC). When around 0: no correlation (spatial
randomness).

Permutation approach (to check significance):
Calculate for a high number of maps (e.g. 999 runs) the Moran’s I.
If the observed Moran’s I lies in a tail of the distribution, then this is evidence for a significant value.


Local statistics
When using the global SAC, this provides evidence concerning spatial associations, but no
statements about the ‘where’ are possible.

Local statistics have the following advantages:
- Detection of clusters

, - Output of many parameters
- Visualisation capabilities
- Explore heterogeneity.

The following methods can be used:
- Local Moran’s I
- G* - statistic
- GWR

Local Moran’s I
This is a local disaggregation of the global coefficient.
It determines attribute similarity for each unit in comparison to its neighbourhood.

This enhances the detection of:
- Hot spots: High values surrounded by high values
- Cold spots: Low values surrounded by low values
- Outliers: High values surrounded by low values
Low values surrounded by high values

Moran scatterplot
The Moran scatterplot describes the linear relation of attribute values to its neighbours.




High – high: hotspots » Positive SAC
Low – low: cold spots » Positive SAC
High – low: outliers » Negative SAC
Low – high: outliers » Negative SAC.

Covariance and correlation
Covariance
Measures the association between 2 continuous variables

Pearson product-moment correlation coefficient
Standardised measure of the linear association between 2 variables.

Regression
Regression informs about the form and the nature of a relationship
➢ E.g. how is distance to the core city related to housing prices?

Simple regression:
1 response variable (dependent, metric scale), 1 independent variable (predictor)
➢ E.g. house price = f(floor area)

, Intercept = point at which the line crosses the vertical axis.

Ordinary least squares (OLS) approach
This is a statistical approach to determine the ‘best’ fitting line in a scatterplot.




- Minimizes the squared residuals.
o The black line ^ describes the data as close as possible.

In the equation (see above):
ß’s give insights into the nature of the association

ß0 gives the estimated value of y when x = 0
ß1 says how y varies when x is increased by 1 unit.


Model validation:
After estimating a regression, the following needs to be done:
- Validation of the model quality
- Statistical significance of the estimated parameters
- Fundamental model assumptions
Essential are:
- (adjusted) coefficient of determination (R2)
- T-statistic
- F-statistic
- Akaike Information Criterion (AIC)
- Moran’s I of the regression residuals.


Coefficient of determination (R2)
R2 tests how well a models explains the data.

Beoordelingen van geverifieerde kopers

Alle reviews worden weergegeven
9 maanden geleden

4,0

1 beoordelingen

5
0
4
1
3
0
2
0
1
0
Betrouwbare reviews op Stuvia

Alle beoordelingen zijn geschreven door echte Stuvia-gebruikers na geverifieerde aankopen.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
nielsvenema Rijksuniversiteit Groningen
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
123
Lid sinds
7 jaar
Aantal volgers
77
Documenten
10
Laatst verkocht
3 weken geleden

Former student Technische Planologie (Rijksuniversiteit Groningen) Student Geographical Information Management and Applications (GIMA) Student Environmental and Infrastructure Planning (Rijksuniversiteit Groningen)

4,0

7 beoordelingen

5
2
4
4
3
0
2
1
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen