100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
College aantekeningen

Lecture notes Applied linear regression (SSTB031)

Beoordeling
-
Verkocht
-
Pagina's
55
Geüpload op
20-03-2024
Geschreven in
2023/2024

It is good when it comes to explaining linear regression

Instelling
Vak











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Vak

Documentinformatie

Geüpload op
20 maart 2024
Aantal pagina's
55
Geschreven in
2023/2024
Type
College aantekeningen
Docent(en)
Mr maluleke
Bevat
Alle colleges

Onderwerpen

Voorbeeld van de inhoud

UNIVERSITY OF LIMPOPO



SSTB031 STUDY GUIDE

APPLIED LINEAR REGRESSION

Compiled

By

Mr Maluleke H

2022

, Table of Contents

CHAPTER 1: SIMPLE LINEAR REGRESSION AND CORRELATION ................. 4
1. Introduction.................................................................................................... 4
1.1 Simple Linear Regression Model ............................................................. 4
1.2 Estimation of the Regression Parameters................................................ 6
1.3. Correlation ............................................................................................ 11
What does the standard error means? ............................................................ 15
The sampling distribution of the slope (  1 ) of the regression model ............... 15

Hypothesis testing for 0 and 1 ................................................................... 17
CHAPTER 2: DIAGNOSTICS FOR SIMLPLE LINEAR REGRESSION .............. 19
2.1 Introduction................................................................................................ 19
2.2 Residual Analysis ...................................................................................... 19
Examination of Residuals ................................................................................ 20
Different Patterns of Residual plots ............................................................. 21
2.3 Identification of Outliers ............................................................................. 22
2.4 Detection of Influential observation ........................................................... 23
2.3.1 Leverage procedure ............................................................................ 23
See an electronic book!!! ............................................................................. 23
2.3.2 Deleted residual method ..................................................................... 23
2.3.3 Cook’s distance .................................................................................. 24
CHAPTER 3: MULTIPLE REGRESSION MODEL .............................................. 26
3.1 Multiple Linear Regression Model .......................................................... 26
Matrix Approach to Regression Analysis ..................................................... 26
3.2 Estimation of Regression coefficients .................................................... 28
3.3 Test for the significant of the overall model............................................ 31
3.4 Test for the significant of the regression coefficient ............................... 32
3.5 Inferences about the mean response .................................................... 33
3.6 Inferences about the individual response fitted values .......................... 34
3.7 Multiple Coefficient of determination (R2)............................................... 34
3.8 Testing Portions of the Multiple Regression Model ................................ 35


2

,CHAPTER 4: DIAGNOSTICS FOR MULTIPLE REGRESSION ......................... 40
4.1 Introduction................................................................................................ 40
4.2 Residual Analysis ...................................................................................... 40
Examination of Residuals ................................................................................ 41
different patterns of the residual plots: as in simple linear regression .......... 42
4.3 Identification of Outliers ............................................................................. 43
4.4 Detection of Influential observation ........................................................... 43
4.4.1 Leverage procedure ............................................................................ 43
4.4.2 Deleted residual method ..................................................................... 44
4.4.3 Cook’s distance .................................................................................. 44
4.5 Collinearity................................................................................................. 45
CHAPTER 5: MODEL-BUILDING ....................................................................... 46
5.1 Backward elimination ................................................................................ 46
5.2 Forward elimination ................................................................................... 46
5.3 Stepwise Regression ................................................................................. 46
Appendices ......................................................................................................... 47
Appendix A: Class Examples .......................................................................... 47
Appendix B: Time table ....................................................................................... 51
Appendix C: Module Outline ............................................................................... 52




3

, CHAPTER 1: SIMPLE LINEAR REGRESSION AND
CORRELATION

1.1 Introduction
We have dealt with data that involved a single variable x. In this section, we shall
deal with paired variables x and y. Paired variables means that, for each value of y
there is a corresponding value of x. Here's an example of paired variables:


x 24 15 17 32 19 18 25 34

y 22 11 14 30 17 12 23 31



When confronted with paired data, we are often confronted with two questions:
 Is there a relationship between the variable x and its counterpart y, and
 If so what is the exact nature of the relationship?
 Can you predict the value of y given the value of x?


1.2 Simple Linear Regression Model
Regression explores the expression of this relationship with the use of a regression
Line.
We can establish this statistical relationship in the form of a linear equation. This
equation is used to predict the value of one variable given the value of its partner.
The equation is known as a regression line. The analysis designed to derive an
equation for the line that best models the relationship between the dependent and
independent variables is called the regression analysis. This equation has the
mathematical form:


yi   0  1 xi + i (0)

where yi is the value of the dependent variable for the ith observation.
xi is the value of the independent variable for the ith observation.
i is a random error and




4
€7,00
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
jacksonmobe

Maak kennis met de verkoper

Seller avatar
jacksonmobe
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
0
Lid sinds
1 jaar
Aantal volgers
0
Documenten
2
Laatst verkocht
-

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen