100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4,6 TrustPilot
logo-home
College aantekeningen

Complete exam material of Econometrics 3 (II), Bachelor Econometrics, Vrije Universiteit Amsterdam

Beoordeling
-
Verkocht
2
Pagina's
33
Geüpload op
19-03-2024
Geschreven in
2023/2024

Complete summary of the exam material for the course Econometrics 3 (III) in the 3th year of the Bachelor of Econometrics at the Vrije Universiteit Amsterdam. The summary is in English. All lectures are in the summary, with extra information on some more complex topics.

Meer zien Lees minder











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
19 maart 2024
Aantal pagina's
33
Geschreven in
2023/2024
Type
College aantekeningen
Docent(en)
Siem jan koopman
Bevat
Alle colleges

Onderwerpen

Voorbeeld van de inhoud

Econometrics III Overview CHoogteijling



Econometrics III Overview
Contents
1 Multiple equations in regression 3
1.1 Multiple equations in regressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Seemingly unrelated regression equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Generalized least squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Seemingly Unrelated Regressions, same X . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Feasible generalized least squares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.6 Pooled regressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Panel Data Models 6
2.1 Panel Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Feasible GLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Between estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Within estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 Fixed Effects model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.6 Hausman test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.7 Group-means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.8 Two-Way Fixed Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.9 Difference-in-Difference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Vector Autoregressive Models 13
3.1 VAR(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.1.1 Stationarity and stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.2 Dynamic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1.3 Mean, variance and autocovariance . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 VAR(1) Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.1 One-step ahead forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.2 Multi-step ahead forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.3 Granger causality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.4 Impulse response functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.5 Orthogonal IRF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Parameter estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3.1 Least squares method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.2 Maximum likelihood method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.3 Hypothesis testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.4 Testing for Granger-causality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.5 Bootstrap method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 VAR(p) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4.1 Mean, variance and autocovariance . . . . . . . . . . . . . . . . . . . . . . . . . . . 22


, page 1 of 33

,Econometrics III Overview CHoogteijling


3.4.2 Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4.3 Impulse response function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4.4 Maximum likelihood estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5 Determine order in VAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5.1 Likelihood-ratio test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5.2 Akaike information criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Non-stationary, Cointegration and Vector Error Correction Models 26
4.1 Cointegration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2 Vector Error Correction Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.3 General VAR to VECM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3.1 VAR representation of VECM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.4 Johansen Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.4.1 Trace test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.4.2 Maximum eigenvalue test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.4.3 Johansen Estimation Method for VECM . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Prior knowledge 30
5.1 Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2 Ordinary Least Squares (OLS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.3 Gauss-Markov assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.4 vec operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.5 Kronecker product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.6 Coefficient of determination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.7 Autoregressive model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.8 Eigenvalue analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.9 Cointegration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32




, page 2 of 33

,Econometrics III Overview CHoogteijling


1 Multiple equations in regression

1.1 Multiple equations in regressions
We can compose a multiple set of regression equations. Where i = 1, . . . , N , with N as the number of
different variables.

yi = Xi βi + εi

If the variables can be related to each other, we may wish to analyze the multiple set of regression
equations simultaneously, as if they are a part of a system of equations. Otherwise, we can analyze each
regression equation separately and apply OLS.


1.2 Seemingly unrelated regression equations
We have the multiple set of regression equations yi = Xi βi + εi , where the variables i can be related to
each other. The vector εi contains n noise terms.
The noise vectors may show dependence across different equations. When we want to allow for this
dependence, we use a Seemingly Unrelated Regression (SUR).
Here we assume the noise terms to be normally, independent and identically distributed (NID). Where
In is the n × n identity fmatrix and σi2 is the variance (or scale). The variance can be different for a
different equation i. Hence, the Gauss-Markov assumptions apply to each equation i.

εi ∼ NID(0, σi2 In )

We can express all equations in one system, or y = Xβ + ε, where ε ∼ N (0, Σ). The N n × N n matrix Σ
is the variance-covariance matrix for ε.

      
y1 X1 0 ... 0 β1 ε1
 y2   0 X2 ... 0   β2   ε 2 
 ..  =  ..  .  +  . 
      
.. ..
 .   . . . 0   ..   .. 
yN 0 0 . . . XN βN εN
′ ′ ′
 
E(ε1 ε1 ) E(ε1 ε2 ) . . . E(ε1 εN )
 E(ε2 ε′1 ) E(ε2 ε′2 ) . . . E(ε2 ε′N ) 

Σ = E(εε ) = 
 
.. .. .. .. 
 . . . . 
′ ′ ′
E(εN ε1 ) E(εN ε2 ) . . . E(εN εN )

We can assume across equations that E(εi ε′j ) = σij In , for i, j = 1, . . . , N with i ̸= j. This means that we
assume nonzero correlation between corresponding disturbances in the ith and jth equations and zero
correlation between non-corresponding disturbances.
We can also assume homoskedastic disturbances for each equation, then E(ε1 ε′i ) = σi2 In , for i = 1, . . . , N .


1.3 Generalized least squares
Given the SUR y = Xβ + ε, and ε ∼ NID(0, Σ)), where Σ = Ω ⊗ IN is clearly non-diagonal, we should
apply Generalized Least Squares (GLS). The GLS estimator has optimal properties, certainly under
Gauss-Markov (or similar) assumptions.

β̂GLS = (X ′ Σ−1 X)−1 X ′ Σ−1 y




, page 3 of 33

, Econometrics III Overview CHoogteijling


1.4 Seemingly Unrelated Regressions, same X
We consider the system of equations, but now with the same set of explanatory variables Xi = X, for all
equations i = 1, . . . , N .

yi = Xβi + εi

The SUR with same X is defined as follows, where ε ∼ NID(0, Σ), and Σ = Ω ⊗ In .
      
y1 X 0 ... 0 β1 ε1
 y2   0 X . . . 0   β2   ε2 
 ..  =  ..  .  +  . 
      
.. . .
 .  . . . 0   ..   .. 
yN 0 0 ... X βN εN
 
β1
 .. 
y = [IN ⊗ X]  .  + ε
βN
y = [IN ⊗ X]β + ε

Then the GLS estimate is given by the following equation and by applying some Kronecker properties
we simplify the equation.


β̂GLS = ([IN ⊗ X]′ Σ−1 [IN ⊗ X]−1 [IN ⊗ X]′ Σ−1 y
[IN ⊗ X]′ Σ−1 [IN ⊗ X] = [IN ⊗ X]′ [Ω ⊗ In ][IN ⊗ X]

= [IN ⊗ X ][Ω−1 ⊗ In ][IN ⊗ X]

= Ω−1 ⊗ X X
′ ′
β̂GLS = (Ω−1 ⊗ X X)−1 [Ω−1 ⊗ X ]y
′ ′
= (Ω ⊗ (X X)−1 )[Ω−1 ⊗ X ]y
′ ′
= (IN ⊗ (X X)−1 X y



This implies that for a SUR with same Xs, you can obtain the GLS estimate by applying OLS to each
equation. No joint estimation is needed.


1.5 Feasible generalized least squares
Given the least squares estimate β̂LS , we compute the least squares residuals ei . The estimates for the
elements in the variance-covariance matrix Ω are σ̂i2 and σ̂ij , for i, j = 1, . . . , N , with i ̸= j, leading to
estimate Ω̂.


ei = yi − Xi β̂i,LS
e = y − X β̂LS
e′i ei
σ̂i2 =
n−K
e′ ej
σ̂ij = i
n−K


Feasible GLS (FGLS) is the case of GLS where Ω is unknown. In the unfeasible case Ω is assumed to
be known.

, page 4 of 33

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
charhoog Universiteit van Amsterdam
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
11
Lid sinds
2 jaar
Aantal volgers
6
Documenten
12
Laatst verkocht
8 maanden geleden

3,0

1 beoordelingen

5
0
4
0
3
1
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen