100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
College aantekeningen

Complete WEEK5 note: Machine Learning & Learning Algorithms(BM05BAM)

Beoordeling
-
Verkocht
-
Pagina's
6
Geüpload op
12-03-2024
Geschreven in
2023/2024

THIS IS A COMPLETE NOTE FROM ALL BOOKS + LECTURE! Save your time for internships, other courses by studying over this note! Are you a 1st/2nd year of Business Analytics Management student at RSM, who want to survive the block 2 Machine Learning module? Are you overwhelmed with 30 pages of reading every week with brand-new terms and formulas? If you are lost in where to start or if you are struggling to keep up due to the other courses, or if you are just willing to learn about Machine Learning, I got you covered. I successfully passed the course Machine Learning & Learning Algorithms at RSM with 7.6, WITHOUT A TECHNICAL BACKGROUND before this Master. So if you are from Non-tech bachelor program, this note will navigate the knowledge you should focus on to pass the exam and successfully complete assignments, and for people with some machine learning knowledge, this note will certainly make your life easier and gets you a booster to your grade.

Meer zien Lees minder









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
12 maart 2024
Aantal pagina's
6
Geschreven in
2023/2024
Type
College aantekeningen
Docent(en)
Jason roos
Bevat
Alle colleges

Onderwerpen

Voorbeeld van de inhoud

5.2 The Bootstrap
Bootstrap: a method obtain a new sample set without obtaining independent
data sets from the population by repeatedly sampling observations form the
original data set.

It can be applied to a wide range of statistical learning methods, including ones
which a measure of variability is otherwise difficult to obtain and not
automatically output by statistical software.

Estimates of values (e.g. accuracy) of bootstrapped data can perform great, even
comparable to the estimate based o a simulated datasets from the true
population .

Purpose
Bootstrap can be used to estimate and quantify the uncertain value associated
with a given estimator/statistical learning method

Process
1. Assume our sample is representative of the population of interest
2. Bootstrap randomly select n observations from a dataset to produce a
bootstrap data det, Z*1.

The sampling Is performed with replacement: same observation can occur more
than once in the bootstrap data set.




We can use Z*1 to produce a new bootstrap estimate for an estimate of the dataset (e.g.
accuracy as alpha*1).

, 8.2 Bagging, Random Forests, Boosting
Ensemble method/ weak learners: approach that combines many simple “building block”
models to obtain a single powerful model in prediction performance.

Decision tree have low bias but high variance. Averaging many trees improve variance.
(low bias because it has the information of the interactive features)

Ensemble methods that use regression/classification tree as building blocks
1) Bagging
2) Random forests
3) Boosting

8.2.1 Bagging
Bagging : General purpose procedure for reducing he variance of a statistical learning method. –
- Bagging uses bootstrapping: it takes repeated samples from the single training data set,
build a separate prediction model using each training set, and average the resulting
prediction that leads to low variance.

Bagged trees are grown deep + unpruned.

Bagging is particularly useful for many regression methods, particularly decision trees.

Advantage
1. Low bias
a. Trees are grow deep, and not pruned: thanks to the low variance by averaging,
each tree can be fit to each bootstrapped data
2. Low variance
a. Averaging the trees (could be hundreds/thousands trees!) built on bootstrapped
train data reduces the variance: as it does not rely on any single tree
Disadvantage
1. Can be difficult to interpret the resulting model
2. Could result in highly correlated trees when variance importance’s strongly vary among
the predictors, leading to not effective variance reduction (refer to Random Forest)

Process
1. Create B bootstrapped training data sets
2. Construct B regression trees using the bth bootstrapped training set to get the estimates
of y
3. For regression trees: Average them to obtain a single low-variance statistical learning
model, given by

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
ArisMaya Erasmus Universiteit Rotterdam
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
49
Lid sinds
4 jaar
Aantal volgers
30
Documenten
20
Laatst verkocht
2 maanden geleden
Let's Pass Together!

4,0

1 beoordelingen

5
0
4
1
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen