100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Samenvatting algemene deel MTS3 UU (English)

Beoordeling
2,5
(2)
Verkocht
5
Pagina's
11
Geüpload op
09-10-2018
Geschreven in
2017/2018

Samenvatting toets algemene deel Methoden Techniek & Statistiek 3 (MTS3). Dit gedeelde is in het Engels gegeven dus de samenvatting is ook in het Engels. Ik heb dit vak zelf met een 9,5 afgerond (9,5 voor dit tentamen, 10 voor de SPSS-toets en een 9,1 voor het studiepadspecifieke deel). Kijk voor meer informatie daarom in de bundel.

Meer zien Lees minder









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Heel boek samengevat?
Ja
Geüpload op
9 oktober 2018
Aantal pagina's
11
Geschreven in
2017/2018
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Summary MTS3
Week 1. Regression
 Regression is about a simple linear model which calculates the outcome with the
correlaton coefcient (b or r) and the error.
 A simple regression formula is: y = b0 + b1*X1 + e
- b0: the point where the line intersects the vertcal aais of the graph.
- b1: the slope of the line. A positve b1 describes a positve correlatonn where a
negatve b1 describes a negatve correlaton.
- X1: the predictve factor that afects the outcome y.
- E: the standard error for the partcipant (i).
 More variables can be added in the formula as b2n b3 etc.
Y = (b0 + b1*X1 + b2*X2) + e
- Y: the outcome variable (DV).
- B1: the coefcient of the rrst predictor (X1) (IV).
- B2: the coefcient of the second predictor (X2) (IV).
 With one predictve value we speak of a simple regressionn but when there are multple
predictve values we speak of multiple regression.

Predicting the model
 Residues: the diferences between the predicted values and the observed values.
- Positve residue: when the observed values are greater than the predicted values.
- Negatve residue: when the observed values are smaller than the predicted values.
 Sum of squared residue/residue sum of squares (SSy): to easily calculate with the
residualsn the residue values are squared and added together. This gives an idea of how
much ‘error’ there is in the model.
 Goodness fi of ihe model: does the model rt with the observed data?
 Sum squared diferences/ioial sum of squares (SSi): total amount between the base
model (predicted values) and the observed data. We can use the mean/average to to
answer the queston above.
 Model sum of squares (SSm): the diference between SSt and SSy. When a beter rtng
model is added there is an improvement in the SSyn this can be compared by calculatng
SSm. When the SSm is very largen the regression model is very diferent from the
average. When the SSm is very smalln then the regression model is beter to use instead
of the average.

Figure 1. The rrst one (top lef) shows the SSTn which represents the diference between the
observed data and the average of the outcome Y.
The second graph (top right) shows the SSyn which represents the diference between
the observed data and the regression line.
The third graph (botom) shows the SSmn which represents the diference between
the average of Y and the regression line.

,  R2 is the amount of variance in the outcome which is eaplained by the model (SSm)n
relatve to how much variance there was already in the rrst place (SSt). This can be
calculated by the formula: R2 = (SSm/SSt)
 Mean squares of MS (MSm): the mean sum of squares; used to calculate the F-rato. This
can be calculated by the formula: F = (MSm/MSr)
 F-ratio: calculates the diference between the predicted values and the observed values.
If the model is goodn we eapect great improvements in the predicted values where MSm
is large. With a small diference between the observed data and the modeln MSr is small.
A great model should have a large F-raton with a value larger than 1.
- To calculate the signircance from R2 we can use this formula:
F = ((N-k-1)R2) / (k(1-R2))
N is the number of partcipants; k is the number of variables in the model.
This F tests the null-hypothesis where R2 = 0.

Assessing individual predictve factors

Beoordelingen van geverifieerde kopers

Alle 2 reviews worden weergegeven
5 jaar geleden

Incompleet

5 jaar geleden

2,5

2 beoordelingen

5
0
4
1
3
0
2
0
1
1
Betrouwbare reviews op Stuvia

Alle beoordelingen zijn geschreven door echte Stuvia-gebruikers na geverifieerde aankopen.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
bcrose Universiteit Utrecht
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
370
Lid sinds
11 jaar
Aantal volgers
266
Documenten
6
Laatst verkocht
8 maanden geleden

3,6

60 beoordelingen

5
12
4
24
3
19
2
0
1
5

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen