100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

SUMMARY Introduction to Management Science

Beoordeling
-
Verkocht
-
Pagina's
143
Geüpload op
31-01-2024
Geschreven in
2023/2024

This is a very useful summary with all the highlights from the chapters!












Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Heel boek samengevat?
Nee
Wat is er van het boek samengevat?
1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12
Geüpload op
31 januari 2024
Aantal pagina's
143
Geschreven in
2023/2024
Type
Samenvatting

Voorbeeld van de inhoud

1


SUMMARY: Introduction to Management Science
Frederick Hillier, 7e

Final Exam Part 1: Spreadsheet skills exam – Chapters 1, 2, 4, 5, 6, 10, 11

Final Exam Part 2: Written exam – Chapters 3, 4, 8, 9, 12



CH1: INTRODUCTION............................................................................................................................... 1
CH2: OVERVIEW OF THE ANALYSIS PROCESS......................................................................................... 10
CH3: CLASSIFICATION AND PREDICTION MODELS FOR PREDICTIVE ANALYTICS ................................... 26
CH4: PREDICTIVE ANALYTICS BASED ON TRADITIONAL FORECASTING METHODS ............................... 45
CH5: LINEAR PROGRAMMING: BASIC CONCEPTS.................................................................................. 60
CH6: LINEAR PROGRAMMING: FORMULATION AND APPLICATIONS .................................................... 71
CH8: WHAT-IF ANALYSIS FOR LINEAR PROGRAMMING ......................................................................... 83
CH9: NETWORK OPTIMIZATION PROBLEMS .......................................................................................... 97
CH10: INTEGER PROGRAMMING......................................................................................................... 107
CH11: NONLINEAR PROGRAMMING ................................................................................................... 115
CH12: DECISION ANALYSIS ................................................................................................................... 129



CH1: INTRODUCTION
Business analytics= The art and the science of transforming data into insights for making better
business decisions.

Three stages of analytics:

1. Descriptive analytics= Analysing data to create informative descriptions of what has
happened so far.
2. Predictive analytics= Using models to create predictions of what is likely to happen in the
future.
3. Prescriptive analytics= Using decision models, including the optimization models of
management science, to prescribe the best options for managerial decision making.

You should be able to:

1. Define the term management science.
2. Describe the nature of management science.
3. Describe mathematical models and spreadsheet models.
4. Define the term business analytics.
5. Describe the nature of business analytics.
6. Describe the three categories of business analytics.
7. Describe the relationship between management science and business analytics.
8. Identify the levels of annual savings that management science sometimes can provide to
organizations.

, 2


9. Identify some special features of this book.

1.1 The Nature of Management Science
Management science (MS)= A discipline that attempts to aid managerial decision making by applying
a scientific approach to managerial problems that involve quantitative factors.

Operations research (OR)= The traditional name for management science that still is widely used
outside of business schools.

Like management science, business analytics attempts to aid managerial decision making but with
particular emphasis on three types of analysis:

1. Descriptive analysis: The use of data (sometimes massive amounts) to analyse trends to
date.
2. Predictive analytics: The use of data to predict what will happen in the future.
3. Prescriptive analytics: The use of data to prescribe the best course of action.

The techniques of the management science discipline provide the firepower for prescriptive analytics
and, to a lesser extent, for predictive analytics, but not for descriptive analytics.

Steps systematic investigation: defining the problem, gathering relevant data, formulating a
mathematical model, determining how to solve the model, testing and refining the model, applying
the model to develop recommendations for management, helping to implement the
recommendations adopted by management.

Mathematical model= An approximate representation of, for example, a business problem that is
expressed in terms of mathematical symbols and expressions.

REVIEW QUESTIONS:

1. When did the rapid development of the management science discipline begin?
2. What is the traditional name given to this discipline outside of business schools?
3. What does a management science study provide to managers to aid their decision making?
4. Upon which scientific fields and social sciences is management science especially based?
5. What are some quantitative factors around which many managerial problems revolve?




1.2 What is Business Analytics?
By using a variety of innovative techniques to analyse the available data, business analytics can be
defined as the art and the science of transforming data into insight for making better business
decisions.

Big data= Refers to the era of big data we have entered in recent decades where enormous and
increasing amounts of transactional data commonly are available for analysis.

Three categories of business analytics:

, 3


1. Descriptive analytics: Analysing data to create informative descriptions of what has
happened so far.
- Requires dealing with massive amounts of data. Uses innovative techniques (including
algorithms) to explore data, locate and extract the data that are relevant, and identify the
interesting patterns and summary data.
- A key tool: data visualization= After exploring data to identify the insights, the goal of
data visualization is then to communicate these insights clearly and efficiently to
managers and other users through the careful selection of the most effective visual
graphics.
2. Predictive analytics: Using models to create predictions of what is likely to happen in the
future.
- Often involves applying statistical models to predict future events or trends.
- Forecasting models= Models for predicting a future quantity of some type based on the
historical pattern of that quantity.
- Computer simulation= Using a computer to simulate the operation of an entire process
or system.
3. Prescriptive analytics: Using decision models, including the optimization models of
management science, to prescribe the best options for managerial decision making.
- Involves applying decision models to the data to prescribe what should be done in the
future.
- Purpose: to guide managerial decision making ‘decision analytics’

Classification= Using models to predict a ‘yes-or-no’ outcome (or perhaps one of a small set of
possible outcomes).

Business analytics is sometimes referred to as data science/data analytics/decision analytics.
Business intelligence is a traditional name for descriptive and predictive analytics.

Data science= An interdisciplinary field that uses scientific methods, processes, algorithms, and
systems to extract knowledge or insights from even massive amounts of data in various forms.

The important difference between business analytics and data science is that data science is more
interdisciplinary, more based on scientific methods, more applicable to various areas in addition to
business, and more concerned with how to deal with even massive amounts of data in various forms.

Data science is based on a strong background in statistics, computer science, and relevant
technologies.

Data scientist= A common title given to highly trained practitioners of data science or business
analytics who mainly focus on the application of science to the analysis of data.

Machine learning (ML)= A technology that allows computers to learn automatically from historical
relationships and trends in the data in order to do such things as making data-driven predictions.

Artificial intelligence (AI)= The goal of artificial intelligence is to build intelligent computer programs
and machines that can simulate human thinking capability and behaviour.

REVIEW QUESTIONS:

1. What are some quantitative decision sciences that are drawn upon by business analytics?
2. What is meant by the era of big data and what role did it play in the origin of business
analytics?

, 4


3. What does descriptive analytics involve doing?
4. What does predictive analytics involve doing?
5. What does prescriptive analytics involve doing?
6. What is data science and how does it differ from business analytics?
7. What is machine learning and how does it relate to business analytics?
8. What is artificial intelligence and how does it relate to machine learning?




1.3 The Relationship Between Management Science and Business Analytics
Operations research analysts= A common title for a management science analyst.

Management science commonly is called operations research of business schools.

INFORMS= The acronym for Institute for Operations Research and the Management Sciences, a
prominent international society that embraces both management science and business analytics.

Spreadsheet modelling= An approximate representation of, for example, a business problem that is
laid out on a spreadsheet in a way that facilitates analysis of the problem.

REVIEW QUESTIONS:

1. How do business analytics and management science typically divide up dealing with the three
categories of analytics?
2. What are some application areas of analytics outside of business?
3. What has been the trend in the demand for business analysts who are highly trained in
business analytics and management science?
4. What is the common name for management science outside of business schools?
5. What is the name of the prominent international professional society that encompasses both
business analytics and management science?
€6,99
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
smk5 Nyenrode Business Universiteit
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
14
Lid sinds
2 jaar
Aantal volgers
5
Documenten
17
Laatst verkocht
1 maand geleden

3,0

1 beoordelingen

5
0
4
0
3
1
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen