100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary Machine Learning

Beoordeling
-
Verkocht
-
Pagina's
61
Geüpload op
10-01-2024
Geschreven in
2022/2023

Samenvatting van alle colleges, aangevuld met nodige informatie uit het boek Summary of all lectures, supplemented with information from the book.












Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Heel boek samengevat?
Nee
Wat is er van het boek samengevat?
Hoofdstukken uit colleges
Geüpload op
10 januari 2024
Aantal pagina's
61
Geschreven in
2022/2023
Type
Samenvatting

Voorbeeld van de inhoud

Week 1
Introduction
The course
Lectures with pen & paper exercises

Lab sessions

Project days



Grade

 50% project (report & code)
 50% written exam



Machine learning
Supervised learning => learning relationship (f) between input (x) & output (y)
based on training data

 Classification




 Regression




Methods for classification

 Logistic regr
 K nearest neigbours
 Linear/quadratic discriminant analysis
 Decision trees/ random forest

,  Support vector machines
 Neural networks

Methods for regression

 Linear
 Decision trees/ random forest
 Neural networks



Unsupervised learning => learning structure in training data without output
variable to predict

 Clustering




 Structure




Methods for clustering

 K means
 Expectation maximisation
 Hierarchical

Methods for dimensionality reduction

 Principal component analysis



How to optimally use training/test data?

,  Resampling: cross validation, bootstrapping



Statistical learning (chapter 2)
Statistical learning
Estimating f

 Income = y = response var
Years of education = x = predictor
 Unknown relationship between x & y = f
 Random error with mean 0 = E
- Part of y not explained by f
- Black bars
 Can also be multivariate
 More than 2 input dimensions (x)
- Number of input dimensions = p
- Number of data points = n



Prediction

 y = f(x) + E
- Y & f usually unknown
- Estimate f to predict y from known x values  ^y = ^f (x)
- F estimated using training data
- Error term E
 Error of the model
- Estimated from data set = mean squared error
 Reducible & irreducible error
- Reducible error => can be reduced by applying more appropriate
learning technique & models, or by adding more training data
- Irreducible error => cannot be reduced because relevant input is
unmeasured or there is unmeasurable variation




Inference

 Again estimate f
- But now: understand how x affects y
 Prediction vs inference
- Prediction => estimate to get good prediction

, - Inference => estimate to get understanding



Prediction accuracy vs model interpretability

 Linear models => high interpretability & sometimes high accuracy
Highly non-linear models => low interpretability, high accuracy c
 Choice depends on prediction or inference
- Prediction  more likely non-linear
- Inference  more likely linear



Parametric vs non-parametric

 Parametric
- Choose functional form of f
- Learn parameters of f from training data using least squares or
different method

😊 easier to estimate set of parameters than to fit arbitrary function 
less training data needed

☹ if chosen functional form is too far from truth  results can be poor

 Non-parametric
- No assumptions about functional form of f
- Estimate of f should fit well

😊 potential good fit, even if input-output relations are complex

☹ requires much more training data, risk of overfitting



Supervised & unsupervised

 Supervised learning => based on n training examples with p input
dimensions & 1 output (y), fit y = f(x) + E
 Unsupervised learning => n training examples with p input dimensions,
no corresponding outputs (y)
- Find structure in data: clustering or dimensionality reduction



Regression & classification

 Regression
- Response is quantitative (e.g. numerical)
 Classification
- Response is qualitative/categorical



Accuracy of a model

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
michouweimar Wageningen University
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
48
Lid sinds
5 jaar
Aantal volgers
33
Documenten
34
Laatst verkocht
1 maand geleden

3,0

5 beoordelingen

5
0
4
1
3
3
2
1
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen