100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4,6 TrustPilot
logo-home
Tentamen (uitwerkingen)

SOLUTIONS MANUAL for Plasma Physics An Introduction 2nd Edition by Fitzpatrick Richard.

Beoordeling
-
Verkocht
-
Pagina's
101
Cijfer
A+
Geüpload op
08-01-2024
Geschreven in
2024/2025

SOLUTIONS MANUAL for Plasma Physics An Introduction 2nd Edition by Fitzpatrick Richard.

Instelling
Plasma Physics An Introduction
Vak
Plasma Physics An Introduction











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Gekoppeld boek

Geschreven voor

Instelling
Plasma Physics An Introduction
Vak
Plasma Physics An Introduction

Documentinformatie

Geüpload op
8 januari 2024
Aantal pagina's
101
Geschreven in
2024/2025
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Voorbeeld van de inhoud

, CHAPTER 1

Chapter 1



1.1 (a) Consider a one-dimensional slab of plasma whose whose bounding surfaces are nor-
mal to the x-axis. Suppose that the electrons (whose mass, charge, and number density
are me, −e, and ne, respectively) displace a distance δxe parallel to the x-axis, whereas
the ions (whose mass, charge, and number density are mi, +Z e, and ni = ne/Z, re-
spectively) displace a distance δxi. The resulting charge density that develops on the
leading edge of the slab is
σ = −e ne δxe + Z e ni δxi = e ne (δxi − δxe). (1)

An equal and opposite charge density develops on the opposite face of the slab. The
x-directed electric field generated inside the slab is
σ e ne
E =− =− (δx − δx ). (2)
x i e
ǫ0 ǫ0
The equation of motion of an individual electron inside the slab is thus

.. e2 ne
me δ xe = −e Ex = (δxi − δxe). (3)
ǫ0
Likewise, the equation of motion of an individual ion is

.. Z 2 e2 n i
mi δ xi = Z e Ex = − (δxi − δxe). (4)
ǫ0
Let us search for simultaneous solutions of Equations (3) and (4) of the form

δxe(t) = δxˆe cos(ω t), (5)
δxi(t) = δxˆi cos(ω t). (6)

It follows that

(ω2 − Π e2) δxˆe + ω p2 e δxˆi = 0, (7)
Πi2 δxˆe + (ω2 − ω p2 i) δxˆi = 0, (8)
where Πe = (e2 ne/ǫ0 me)1/2 and Πi = (Z 2 e2 ni/ǫ0 mi)1/2. The solutions are ω = 0
with δxˆe = δxˆi, and ω2 = Π 2 + Π 2 with Π 2 δxˆe + Π 2 δxˆi = 0. The former mode
e i i e
corresponds to a uniform translation of the slab. The latter mode is a plasma oscillation
whose frequency, Π, satisfies
1/2
Π = Πe2 + Πi2 , (9)

1

,2 □ Plasma Physics: An Introduction (Second Edition): Solutions to Exercises

and whose characteristic ratio of ion to electron displacement amplitudes is
δxˆi Π i2 me
δxˆ = − = −Z i . (10)
e Π e2 m
(b) Suppose that the electrons, whose temperature is Te, are distributed according to the
Maxwell-Boltzmann law,

ne + δne = ne exp(+e δΦ/Te), (11)

where ne is the equilibrium number density, and δne is the number density perturbation
due to the perturbing potential δΦ. Likewise, the ions, whose temperature is Ti, are
distributed according to

ni + δni = ni exp(−Z e δΦ/Ti). (12)

Thus, in the limit that δΦ is small, we obtain
e ne
δne = δΦ, (13)
Te
Z e ni
δni = − δΦ. (14)
Ti
If δΦ is a consequence of a small perturbing charge density, δρext, then the total charge
density is
2 2
!
e2 ne Z e ni
δρ = δρext + Z e δni − e δne = δρext − + . (15)
Te Ti
Thus, Poisson’s equation,
2 δρ
∇ δΦ = − , (16)
ǫ0
yields 2
2 δρext
∇ – δΦ = − , (17)
λ 2D ǫ 0

where !2 !2 !2
1 1 1 1
= + , (18)
λD 2 λD e λD i
with λD e = (ǫ0 Te/ne e2)1/2 and λD i = (ǫ0 Ti/ni Z 2 e2)1/2. Comparison of Equation (17)
with Eq. (1.14) in the book reveals that λD is the effective Debye length.
1.2 It is reasonable to assume, by symmetry, that the perturbed potential is a function only of the
radial spherical coordinate r. In other words, δΦ = δΦ(r). Thus, the governing differential
equation becomes !
1 d 2 dδΦ 2
2 r – 2 δΦ = 0 (19)
r dr dr λD
for r ≠ 0. However, in the limit r → 0 we expect the perturbed potential to approach the
Coulomb potential: i.e.,
q
δΦ → (20)
4π ǫ0 r

, Chapter 1 □ 3

as r → 0. We also expect the potential to be well behaved in the limit r → ∞ . Let δΦ =
V(r)/r. Equation (19) transforms to give
d2V 2
− V = 0. (21)
dr2 λD2
The solution that is consistent with the boundary conditions at r = 0 and r = ∞ is
√2 r
V(r) = q . (22)
4π ǫ0 exp − λD
Thus, √
δΦ(r) = q 2r . (23)
4π ǫ0 r exp − λD

According to Poisson’s equation, the charge density of the shielding cloud is

δρ(r) = −ǫ0 ∇2δΦ. (24)

However, according to the governing differential equation,
2 2
∇ δΦ = δΦ (25)
λD2
for r ≠ 0. Hence, √
2q 2r
δρ(r) = − exp − . (26)
4π r λD2 λD
The net shielding charge contained within a sphere of radius r, centered on the origin, is
∫ r ∫ √ ′
′ ′2 ′ 2q r ′ 2r ′
Q(r) = 4π δρ(r ) r dr = − r exp − dr . (27)
0 λD 0 λD
2

Thus, √ √
∫ √

x.λD r/ 2
λD r/ 2 λD r/ 2
Q(r) = −q x e−x dx = −q −x e− 0 + e− dx , (28)
0 0 x
.
which reduces to √2 r √ 2r
Q(r) = −q 1 − 1 + exp − . (29)
λD λD
1.3 Consider a one-dimensional slab of plasma whose bounding surfaces are normal to the x-
axis. Suppose that the electrons (whose mass, charge, and number density are me, −e, and
ne, respectively) displace a distance δxe parallel to the x-axis, whereas the ions remain sta-
tionary. The resulting charge density that develops on the leading edge of the slab is

σ = −e ne δxe. (30)

An equal and opposite charge density develops on the opposite face of the slab. The x-
directed electric field generated inside the slab is
σ e ne
E =− = δx . (31)
x e
ǫ0 ǫ0

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
Succeed Havard University
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
1796
Lid sinds
5 jaar
Aantal volgers
1499
Documenten
5757
Laatst verkocht
7 uur geleden

3,9

286 beoordelingen

5
162
4
34
3
34
2
9
1
47

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen