,Hoofdstuk 2
,Enkelvoudige sommatieteken - THEORIE
Een enkelvoudig sommatieteken wordt gebruikt wanneer je een som wil berekenen over één rij of over één kolom.
t
ALGEMENE REGEL BEREIK BEREKENEN
1. Wanneer er na het sommatieteken een constante staat
(= een cijfer of letter zonder een index) plaatsen we de Het bereik start niet altijd bij 1.
constante voor het sommatieteken. bv.
2. Wanneer je regel 1 toepast en je bekomt daarbij een situatie
dat het sommatieteken alleen komt te staan = eenzaam of
werkloos sommatieteken dan vervangen - als het bij 1 begint (bovenste waarde – onderste waarde) + 1.
- we het sommatieteken door het bereik. = n Concreet is dit geval: (10 – 3) + 1 = 8. Uiteraard kan dit enkel
als je de numerieke waarde van n kent. '
3. Je laat de haakjes weg en plaatst een enkelvoudig
sommatieteken voor alle termen binnen de haakjes. Daarna met een letter = waarden van bereik optellen
kijk je of je door middel van de vorige regels eventueel nog
kan vereenvoudigen —> eigenlijk deze stap eerst
-
HET BELANG VAN HAAKJES
P
FORMULE MERKWAARDIG PRODUCT
-
, OEFENING 14
=Exi2 -E2xie +
Ec
=Exi-2 e Exit e .
naamloos sommatieteken
-Exi-2 e Exi+ en .
OEFENING 15
Gegeven: f(k) = 2k -1
[(2k 1) -
=E2k -
E1
=2ER -
1 I start niet bij it !
=
2 .
0 -
1 . 341 -
( 1)
- +
1 =
3)
-
(
-
1 +
0 +
1)
I -
3