100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

[ Intelligent Systems ] Summary | Lecture Notes

Beoordeling
2,5
(2)
Verkocht
13
Pagina's
17
Geüpload op
03-04-2018
Geschreven in
2017/2018

These are lecture notes of Intelligent Systems from the study Lifestyle Informatics/Artificial Intelligence at VU Amsterdam. Everything marked in yellow is extra important, everything that's blue is an example.











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
3 april 2018
Aantal pagina's
17
Geschreven in
2017/2018
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

INTELLIGENT SYSTEMS
LECTURE 1 – INTRODUCTION
MACHINE AS AN INTELLIGENT AGENT

Main methods to optimize for the best expected outcome: Text/image processing, data integration,
knowledge representation, automatic reasoning, machine learning and genetic programming (writing code to
improve its own behavior).

Philosophical questions: What is consciousness/free will? Can a machine be creative/have rights?
Ethical questions: surveillance/privacy, responsibility, accountability, using/misusing IS.

CORE TOPICS
• Topic 1: Search and heuristics (principal of rationality)
• Topic 2: Knowledge
• Topic 3: Adaptivity (machine learning)


STATE SPACE REPRESENTATION

Representing problems as state spaces problems (because the world is absurdly complex) à state spaces must
be abstracted/simplified for problem solving à (Abstract) solution = set of real paths that are solutions of the
real world.
1. What actions and states to consider, given a goal:
o What are appropriate states and initial states? (atomic)
o What are the possible actions to move between states? (atomic)
o What is the cost of an action?
2. Goal formulation: what are the successful world states?
3. Search: determine possible sequences of actions that lead to goal states and choose the “best”
sequence.
4. Execute: Give the solution and perform the actions.

Example - Romania:
⁃ Concrete problem: In Arad, flight from Bucharest.
o States: various (representation of) cities
o Actions: drive between cities
⁃ Concrete goal: Be in Bucharest
⁃ Find solution: sequence of best states (Arad à Sibiu à
Fagaras à Bucharest)
⁃ Execute plan: buy tickets + travel

SEARCH

Search through explicit tree generation:
1. ROOT = initial state
2. Nodes and leafs generated through successor function (related to action)

State = a (representation of) a physical configuration
Node = a data structure belonging to a search tree




1

,SEARCH STRATEGIES
Strategy = picking order of node expansion. Performance is measured in 4 ways:
1. Completeness: does it always find a solution if one exists?
2. Optimality: does it always find the least-cost solution?
3. Time Complexity: number of nodes generated/expanded?
4. Space Complexity: number of nodes stored in memory during search?
a. Time & Space complexity are measured in terms of problem difficulty:
i. b – maximum branching factor of the search tree (amount of possible choices)
ii. d – depth of the least-cost solution (best solution: best distance between root)
iii. m – maximum depth of the state space (may be infinite)


UNINFORMED SEARCH STRATEGIES

Uninformed search strategies (a.k.a. blind search) = use only information available in problem definition:
• Breadth-first search = expand SHALLOWEST unexpanded node
o Implementation: fringe is a FirstInFirstOut (FIFO) queue (A à B à C à D à E à F…)
§ Completion: Yes, if b is finite
§ Time complexity: Yes
§ Space complexity: Yes, if each node is retained in memory
§ Optimality: Yes, unless actions have different costs
• Disadvantage: longest path
• Depth-first search = expand DEEPEST unexpanded node
o Implementation: fringe is a LIFO queue (= stack) (A à B à D à H & I à E à J & K à C…)
§ Completion: No, unless search space is finite and no loops are possible
§ Time complexity: Yes, if many solutions, a bit faster than BF
§ Space complexity: Yes, backtracking search uses even less memory
§ Optimality: No, unless search space is finite and no loops are possible
• Depth-limited search = DF-search with depth limit l
§ Completion: Yes (if I >= d)
§ Optimality: No
• Depth-first Iterative Deepening search = Breadth-F + Depth search
§ Completion: Yes (no infinite paths)
§ Space Complexity: Yes
§ Optimality: Yes
• Bidirectional search
• Uniform-cost search




2

, LECTURE 2 – INFORMED & ADVERSARIAL SEARCH
INFORMED SEARCH (HEURISTICS)

General approach of informed search: best-first search (node is selected for expansion based on an evaluation
function f(n). Fringe = queue sorted in decreasing order of desirability.

Heuristic function = educated guess that reduces or limits the search for solutions in domains that are difficult
and poorly understood. Describes the expected quality of a node.
• h(n) = estimated cost of the cheapest path from node n to goal node.
• If n is goal, then h(n) = 0.
• Complete knowledge: often not available & too expensive to calculate
• Use partial knowledge/human expertise = educated guess (can be completely wrong)

Two elements, h1(n) and h2(n), with 0 < h1(n) < h2(n) < h *(n), then h2(n) is more informed than h1(n).
• Perfect heuristics: h(n) = h*(n)
• Trivial heuristics: h(n) = 0
o Advantage: With h1 fewer nodes have to be searched with h2
o Disadvantage: h2 is often more expensive to calculate.


ADVERSARIAL SEARCH

Games are a form of multi-agent environment. Competitive multi-agent environments give rise to adversarial
problems a.k.a. games. Easy to represent and agents restricted to small number of actions.


SEARCH – NO ADVERSARY
• Solution is (heuristic) method for finding goal
• Heuristics and CSP techniques can find optimal solution
• Evaluation function: estimate cost from start to goal
• Examples: path planning, scheduling activities

GAMES – ADVERSARY
• Solution is strategy (strategy specifies moves for every possible opponent reply)
• Time limits force an approximate solution
• Evaluation function: evaluate “goodness” of game position
• Examples: chess, checkers, Othello, backgammon, GO

Deterministic: you know where the figures are.
Chance: you know where the figures are, but there is always an element of chance.

MINMAX

• Two players: MAX and MIN
• MAX moves first (uses search tree to determine next move), and they take turns
until the game is over. Winner à reward & loser à penalty.
• Games as search
o Initial state: e.g. board configuration of chess
o Successor function: list of (move, state) pairs specifying legal moves
o Terminal test: is the game finished?
o Utility function: gives numerical value of terminal states
§ win (+1), lose (-1), draw (0) in tic-tac-toe




3

Beoordelingen van geverifieerde kopers

Alle 2 reviews worden weergegeven
3 jaar geleden

5 jaar geleden

2,5

2 beoordelingen

5
0
4
1
3
0
2
0
1
1
Betrouwbare reviews op Stuvia

Alle beoordelingen zijn geschreven door echte Stuvia-gebruikers na geverifieerde aankopen.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
gg2000 Vrije Universiteit Amsterdam
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
97
Lid sinds
10 jaar
Aantal volgers
85
Documenten
16
Laatst verkocht
2 jaar geleden

3,8

16 beoordelingen

5
3
4
10
3
1
2
1
1
1

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen