100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Samenvatting Eindtoets Lineaire Algebra en Vector Analyse (GEO2-1201) met voorbeelden uitgewerkt

Beoordeling
-
Verkocht
-
Pagina's
51
Geüpload op
29-12-2023
Geschreven in
2022/2023

Samenvatting voor de cursus Lineaire Algebra en Vector Analyse (GEO2-1201). Behandelt alle informatie voor de eindtoets en geeft hierbinnen verschillende uitgewerkte voorbeelden. Bespreken van de volgende onderwerpen: eigenwaarden, eigenvectoren, vectorrekenen, integralen, interpretatie gradiënt divergentie en rotatie en niet-cartesische coördinatenstelsels.

Meer zien Lees minder











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Heel boek samengevat?
Nee
Wat is er van het boek samengevat?
Onbekend
Geüpload op
29 december 2023
Aantal pagina's
51
Geschreven in
2022/2023
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

HOOFDSTUK 1 – EIGENWAARDEN EN
EIGENVECTOREN
Eigenwaarden en eigenvectoren
Een eigenvector is een getransformeerde vorm van een vector, waarbij hij
tijdens transformatie niet van richting veranderd. Hij blijft als kleinere of
grotere vorm op zijn oude lijn lopen.
Er geldt: M *r⃗ =  *r⃗ “Transformatie matrix (M) keer
eigenvector r⃗ geeft zelfde
antwoord als schaling van eigenvector r⃗ met
constante ”

De eigenwaarde is de constante . De waarde die hoort bij de specifieke
transformatie van de oude eigenvector naar nieuwe eigenvector
  > 1; eigenvector is x groter dan oude vector,  < 1; eigenvector x kleiner
dan oude vector
  = 1 eigenvector heeft zelfde lengte als oude vector; weerspiegelt een
rotatie

Let op! Een transformatie matrix weerspiegelt een rotatie wanneer de
determinant van deze matrix gelijk is aan 1. De rotatiehoek kan bepaald door
M (m 11 m 12
m 21 m 22 )te vergelijken met standaard rotatiematrix
cos −sin
sin cos ❑( )
. Dit geeft
= arccos (m11)

VB1 Figuur laat de oorspronkelijke situatie (rood) zien met
eigenvectoren v1
en v2 en de getransformeerde situatie (blauw) met matrix M
waarbij de
eigenvectoren v1 en v2 zijn vermenigvuldigd met een
eigenwaarden.

Te zien is dat v1 is vermenigvuldigd met 1, waardoor de
nieuwe
eigenvector in dezelfde richting als v1 is verlengd. V2 is
vermenigvuldigd
met 2, waardoor de nieuwe eigenvector in dezelfde richting als v2 is
verkleind.

VB2 Zie opgaven deformation I en IV

Bepaling eigenwaarden en eigenvectoren
Om de eigenwaarden en latere eigenvectoren te bepalen, moet een
determinant worden opgesteld die gelijk is aan 0. Vanuit hier kunnen de
eigenwaarden worden berekend en daarom ook de nieuwe eigenvectoren. Dit
gaat als volgt:

, 1) Vul de vergelijking M *r⃗ =  *r⃗ in met het gegeven transformatiematrix (M)


||
x
en r⃗ in de vorm van ||
x
y
of y .
z
2) Vermenigvuldig de M met r⃗ aan de linkerkant en  met r⃗ aan de
rechterkant, zodat aan elke kant van het = teken één matrix komt te staan
3) Maak van de bovenste rij van beide matrixen een vergelijking en van de
onderste rij van beide matrix een vergelijkingen zodat twee vormen
ontstaan van “…x + …y = ..”
4) Zet de vergelijkingen in de juiste vorm door alles naar de linkerkant te
brengen en de rechterkant 0 te maken
5) Stel de matrix op en bepaal de determinant
6) Stel de determinant gelijk aan 0
7) Bepaal de waarden van de onbekenden
8) Vul de onbekenden in in de opgestelde vergelijkingen en bepaal de
vergelijkingen
9) Bepaal eventueel nog een voorbeeld r met een x en y die overeen komt
met de vgl’en
Let op! Schrijf bij een (3x3) matrix niet om naar een derde graads vergelijking,
maar haal één van de drie termen buiten haken. Zo houd je een 2de vergelijking
over en een losse andere vergelijking.

Transformatie matrix (M), diagonaal matrix eigenwaarden (D) en
eigenvectormatrix (C)
Met de bepaling van de eigenwaarden en eigenvectoren kunnen nieuwe
matrixen worden opgesteld, namelijk een diagonaal matrix van eigenwaarden
(D) en een matrix van eigenvectoren (C).


De transformatie matrix (M) weergegeven door (
m11 m 12
m21 m 22
geeft )
eigenwaarden ❑1 en ❑2 en eigenvectoren u (u,x en u,y) en v (v,x en v,y) door
uitwerken M *r⃗ =  *r⃗

De diagonaalmatrix van eigenwaarden (D) wordt vanuit hier weergegeven

door
❑1 0
(
0 ❑2 )
De matrix van eigenvectoren (C) wordt vanuit hier weergegeven door

(ux v x
uy vy )
. Let op! Hierbij is de eigenvector u de nieuwe vector die hoort bij ❑1 en

de eigenvector v de nieuwe vector die hoort bij ❑2. Let dus goed op welke
vector je weer in de matrix neerzet.


Er geldt dat: M*C = C * D want ( m11 m12
m21 m22) (
*
ux v x
uy vy ) (
=
❑1 0
0 ❑2 )
*


( ux v x
uy vy )

, Volgt uit: M *r⃗ =  *r⃗

Er geldt dat: C-1*M*C = D wanneer C inverteerbaar is (det C ≠ 0)




VB3 De transformatie matrix (21 12) geeft ❑ = 3 met r^ = √12 ( 11) en ❑ = 1 met
1 1 2



r^2=
1 1
( )
√ 2 −1
. De hierbij horende diagonaalmatrix van eigenwaarden is D =

( )
3 0
0 1
en de diagonaal van eigenvectoren is C =
1 1 1
√ 2 1 −1 ( )
VB4 De transformatie matrix (−11 −14 ) geeft ❑ = 4.3 met r^ =(−0.96
1
0.29
) en ❑ =
1 2


0.7 met
r^2= (−0.96
−0.29)
. De hierbij horende diagonaalmatrix van eigenwaarden is D =

( 4.30 0.70 ) en de diagonaal van eigenvectoren is C = (−0.96 −0.29)
0.29 −0.96



VB5 De transformatie matrix (−11 14) geeft ❑ = 3.6 met r^ =(−0.36
1
−0.93)
en ❑ =
1 2


1.4 met
r^2= (−0.93
−0.36 )
. De hierbij horende diagonaalmatrix van eigenwaarden is D =

(3.60 1.40 ) en de diagonaal van eigenvectoren is C = (−0.36
−0.93 −0.36 )
−0.93




HOOFDSTUK 1 – VOORBEELDEN
Bepaling eigenwaarden en eigenvectoren
Om de eigenwaarden en latere eigenvectoren te bepalen, moet een
determinant worden opgesteld die gelijk is aan 0. Er geldt: M¿ r =  * r .Vanuit
hier kunnen de eigenwaarden worden berekend en daarom ook de nieuwe
eigenvectoren.

VB6 Gegeven is de transformatiematrix M
3
−6
Bepaal de(23 )
eigenwaarden en hierbij horende eigenvectoren.


Er geldt: M¿ r =  * r met r = ( xy ) en M= (23 3
−6 )

, Dit geeft: (23 3
−6
* ) ()
x
y
= *
x
y () wordt (23 xx 3y
−6 y ) ()
=
x
y

Dit geeft: 2x + 3y = x en 3x – 6y = y

2x - x + 3y = 0 en 3x – 6y - y = 0
(2 - )x + 3y = 0 en 3x + (-6 - )y = 0


Dit geeft: Nieuwe matrix is (2−¿3 3 0
−6−¿ 0 )
Dit geeft: Determinant =0

|2−¿¿ 3−6−¿| = 0 (2 - ) * (-6 - ) – (3*3) = 0

-12 - 2 + 6 + ❑2 – 9 = 0 ❑2 + 4 - 21 = 0
( + 7) ( - 3) = 0 = -7 en =3

Dus: Voor = - 7 geeft 9x + 3y = 0 en 3x + y = 0
Dus y = -3x bijvoorbeeld door r
=
1
−3 ( )
Want -3 = -3*1

voor = 3 geeft -x + 3y = 0 en 3x – 9y = 0
Dus x = 3y bijvoorbeeld door r
=
3
1 ()
Want 3 = 3*1


VB7 Gegeven is de transformatiematrix M (−13 20) Bepaal de
eigenwaarden en hierbij horende eigenvectoren.

Er geldt: M¿ r =  * r met r = ( xy ) en M= (−13 20)
Dit geeft: (−13 0) ( y )
2
*
x
=  * ( ) wordt (
x
y
3x
−x
2y
0) ()
=
x
y

Dit geeft: 3x + 2y = x en -x = y

3x - x + 2y = 0 en -x - y = 0
(3 - )x + 2y = 0 en -x + (- )y = 0
Dit geeft: Nieuwe matrix is
3−¿ 2
(
−1 −¿ 0
0
)
Dit geeft: |3−¿¿ 2−¿| =0 (3 - ) * (- ) – (-1*2) = 0

- 3 + ❑2 + 2 = 0 ❑ -3 +2=0
2
€6,49
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
liskimy

Maak kennis met de verkoper

Seller avatar
liskimy Universiteit Utrecht
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
9
Lid sinds
3 jaar
Aantal volgers
0
Documenten
31
Laatst verkocht
3 weken geleden

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen