100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Samenvatting Skills tentamen JASP - ARMS Advanced Research Methods and Statistics ()

Beoordeling
5,0
(1)
Verkocht
8
Pagina's
12
Geüpload op
12-12-2023
Geschreven in
2023/2024

Dit document omvat een volledige samenvatting van de benodigde kennis voor het skills tentamen van ARMS. Zo beschrijft het o.a. hoe je analyses kunt doen en welke assumpties je hierbij test. This document entails a complete summary of all the knowledge needed for the skills test of ARMS. It describes which analyses you have to do when and how to test the assumptions.

Meer zien Lees minder









Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
12 december 2023
Aantal pagina's
12
Geschreven in
2023/2024
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

JASP ARMS
Inhoud
Multiple linear regression (MLR) Frequentist.....................................................................................1
Doing the analysis:..........................................................................................................................1
Checking the assumptions:.............................................................................................................1
Interpreting MLR.............................................................................................................................4
Hierarchical multiple regression.....................................................................................................4
Multiple Linear Regression (MLR) Bayesian........................................................................................5
Interpreting MLR.............................................................................................................................6
Hierarchical multiple regression.....................................................................................................6
Create a dummy variable....................................................................................................................7
Do this in JASP................................................................................................................................7
Dummy variables for Bayesian analyses.........................................................................................7
Factorial ANOVA.................................................................................................................................7
Doing the analysis (Frequentist).....................................................................................................7
Checking assumptions....................................................................................................................8
Follow-up tests...............................................................................................................................9
Bayesian factorial ANOVA...............................................................................................................9
Informative hypotheses testing....................................................................................................10
ANCOVA............................................................................................................................................10
Checking assumptions..................................................................................................................10
Perform the ANCOVA (frequentist)...............................................................................................10
Check the assumptions (Bayesian)................................................................................................10
Perform the ANCOVA (Bayesian)...................................................................................................11
Repeated measures ANOVA..............................................................................................................11
Perform frequentist repeated measures analysis.........................................................................11
Perform Bayesian repeated measures analyses............................................................................12
Mediation.....................................................................................................................................12
Multiple linear regression (MLR) Frequentist
Doing the analysis:
Regression -> Classical -> Linear regression. Put the dependent and independent variables in the right
boxes.

Checking the assumptions:
There are linear relationships between the dependent variable and each of the continuous
independent variables.

, Check this using a scatterplot. A scatterplot has the (continuous) predictor on the x-axis and the
outcome on the y-axis and uses dots to represent the combination of x-y-scores for each case in the
data. A linear relationship means that the scores in the scatterplot form a cloud with an oval shape
that can be describe reasonably well by a straight line.

How to make a scatterplot: Descriptives -> Add the variables in the Variables box -> Scroll down to
Plots and tick Correlation plots in Basic plots

There are no outliers.

An outlier is a case that deviates strongly from other cases in the data set. You can check them by
looking at scatterplots, boxplots, Standard residuals and Cook’s distance.

How to check: Scroll down to Statistics, tick Casewise diagnostics and then select either Standard
residual or Cook’s distance.

A rule of thumb for the standardized residuals is that the values should be between -3.3 and +3.3.
Values bigger or smaller than that indicate potential outliers.




Cook’s distance indicates the overall influence of a respondent on the model. As a rule of thumb, we
maintain that values for Cook’s distance must be lower than 1. Values higher than 1 indicate
influential cases.

What to do with outliers?

1. Do nothing
2. Exclude the data point from the analysis
3. Change the data point either to the ‘correct’ value (only if the outlier is known to be an error
and when the correct value is known), or to a less extreme value. This way this case still has a
large score, but not so extreme that it will completely dominate the results of the analysis.

Absence of multicollinearity

Multicollinearity indicates whether the relationship between two or more independent variables is
too strong. Scroll down to Statistics and tick Collinearity diagnostics.

Beoordelingen van geverifieerde kopers

Alle reviews worden weergegeven
1 dag geleden

5,0

1 beoordelingen

5
1
4
0
3
0
2
0
1
0
Betrouwbare reviews op Stuvia

Alle beoordelingen zijn geschreven door echte Stuvia-gebruikers na geverifieerde aankopen.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
Loissnoek Universiteit Utrecht
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
93
Lid sinds
3 jaar
Aantal volgers
44
Documenten
20
Laatst verkocht
4 dagen geleden

4,0

9 beoordelingen

5
1
4
7
3
1
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen