100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
College aantekeningen

Topic: Algorithmic Persuasion in the Digital Society - lecture's note

Beoordeling
-
Verkocht
-
Pagina's
76
Geüpload op
30-11-2023
Geschreven in
2022/2023

Topic: Algorithmic Persuasion in the Digital Society - lecture's note include topic: online advertising, political communication, health communication, online news, privacy and ethical consideration, future of algorithms












Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
30 november 2023
Aantal pagina's
76
Geschreven in
2022/2023
Type
College aantekeningen
Docent(en)
Sophie boerman
Bevat
Alle colleges

Voorbeeld van de inhoud

🧠
Week 1: Lecture
1. introduction to the course

learning goals

make use of algorithms

algorithms impacts in our lives and research purposes

evaluate the effects of algorithms in real life

course timeline

different topic each week

requires literature

essay and exam

1 individual assignments

30% - 12:00 May 9, 2022, submit via canvas, NO LATE
SUBMISSION

there is a given statement and you will agree/oppose with that
statement

structure: MUST FOLLOW

Introduction




Week 1: Lecture 1

, argument 1

argument 2

conclusion

references

required information: front page

800 words (more on canvas)

1 final exam - 70%

30 MC question, 3 open question

closed book exam

content: all lectures and course literatures

2. introduction to the algorithmic

video

definition

encoded procedures for transforming input data into a desired outputs

based on specified calculations

algorithmic power

prioritize: making order list: emphasize or bring attention to certain things
at the expenses of others

classification: categorize: categorize particular entity to given class by
looking at any number of its features

association: finding links: association decisions mark relationships
between entities

filtering: include or exclude certain things based on rules/criteria; often
take pioritizing, classifications

⇒ rule-based algorithms:
based on rules or steps: have to define in advanced

typically IF -THEN statements

quick, easy to follow (plain text only), but it’s only applicable to specific
conditions (different platform require different algorithms)



Week 1: Lecture 2

, ⇒ machine learning algorithms
learn by themselves, based on statistical models rather than deterministic
rules

trained based on a corpus of data from which they may learn to make certain
kind of decisions without human oversight

flexible and amenable to adaptations, however, it need to be trained (large
set of data to learn through “patterns”, black-box (not always transparency))

Example: Facebook’s DeepFace algorithms

facial recognition: identify human faces, 97% accuracy

but it can be sold to businesses and authoritarian regimes

recommendation system

recommend user certain things

decide which content to show to whom based on certain criteria →
difference in appearance between A and B although in the same app

why

avoid choice overload but select few of them

provide relevant experience to user’s preferences - do not to find
manually but technology can do

techniques

content-based filtering

recommend things based on similarities between items

simple id behind

collaborative filtering

based on item that other user with similar tastes linked in the past

“top 10 in [country]”

platform do not have enough data to know about you but using other
sources of data

hybrid filtering

combination of 2 above




Week 1: Lecture 3

, how people perceive algorithms

appreciation

people rely and prefer algorithmic decision over human decision

even they know the faults of algorithms

despite blindness faith in algorithms process (blackbox)

automation bias

human tend to over-rely on automation (blind faith in information
from computers)



aversion

tendency to prefer human decision over algorithmic decisions, even
the human decisions are clearly inferior

people aversion bcs they don’t understand the algorithmic process



⇒ nuance view: depend on other factors: type of tasks (machine task: prefer
AP, emotional-relevant task: prefer human decisions); level of subjectivity in
decisions; individual characteristics; etc.

3. literature this week: algorithmic persuasion framework in online communication:
conceptualization and a future research agenda - Brahim Zouhali

3 aims

define the concept of AP

propose the APF to understand the role of algorithms in persuasive
communication

present a future research agenda based on insights derived from this
framework

algorithmic persuasion

deliberate attempt by a persuader

influence the beliefs, attitudes and behaviors of people through online
communication: can be short/long terms, intended/unintended,... through
online platforms, devices,...




Week 1: Lecture 4
€15,99
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
thuphunglan46

Maak kennis met de verkoper

Seller avatar
thuphunglan46 Universiteit van Amsterdam
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
4
Lid sinds
2 jaar
Aantal volgers
4
Documenten
5
Laatst verkocht
2 jaar geleden

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen