100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Causal Analytics (CAT) lecture slides + summary + additional notes

Beoordeling
1,0
(1)
Verkocht
15
Pagina's
57
Geüpload op
18-11-2023
Geschreven in
2022/2023

With this summary, I passed the course with an 8. I've compiled a comprehensive Causal Analytics (CAT) summary based on a thorough examination of lecture slides and additional notes. This condensed overview delves into key concepts and insights covered in the lectures, providing a synthesized understanding of the subject matter.

Meer zien Lees minder











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
18 november 2023
Aantal pagina's
57
Geschreven in
2022/2023
Type
Samenvatting

Voorbeeld van de inhoud

Table of contents
General introduction ............................................................................................................................... 2
Chapter 6: ANOVA ................................................................................................................................... 4
Chapter 7: Bivariate Pearson Correlation................................................................................................ 8
Chapter 9: Bivariate regression ............................................................................................................. 13
Chapter 10: Adding a third variable ...................................................................................................... 18
Chapter 11: Multiple regression – 2 predictors .................................................................................... 23
Chapter 12: Dummy predictor variables ............................................................................................... 28
Chapter 14: Multiple regression............................................................................................................ 30
Chapter 15: Moderation ........................................................................................................................ 34
Chapter 16 (and 11.9/11.10): Path analysis .......................................................................................... 39
Chapter 23: Logistic regression ............................................................................................................. 46
Part one ............................................................................................................................................. 46
Part two ............................................................................................................................................. 51




1

,General introduction

If you want to measure the degree of association between variables, you should use descriptive
research questions.

If you want to know why a certain variable as a positive effect on another, you should use
explanatory research questions.



Causal analysis techniques

• Are important because they answer what and why research questions

• They have in common: estimate how much the variance in a dependent variable (y)
systematically varies with the variance in other measured explanatory variables (x)

Scores on dependent variables can be predicted by:
▪ X variables that are measured and included as predictors that systematically affect Y.
▪ Variables that we have not measured and not included as predictors, but that
systematically affect Y (ε = systematic error (or residual))
▪ Variables that we have not measured and that only randomly affect Y (ε = random
error (or residual))

• They are distinguished by:
▪ measurement levels of Y
▪ measurement levels of X
▪ the number of variables the technique can deal with



Methods to analyse the type of associations

1. One-Way Between Subjects Analysis of Variance (ANOVA)
X (nominal/categorical) > Y (continues scale)
They give the same results
2. Bivariate regression analysis
X>Y

3. Multiple regression analysis
Includes multiple independent variables and different measurement levels can be used
r = correlation
Gender
= interaction effect (moderation)
r

Salary Organizational commitment (OC)

r

Team in which someone works

2

, 4. Path analysis
Multiple independent variables and dependent variables

Gender

r Salary Organizational commitment

Team in which someone works


5. Bivariate binary logistic regression analysis
The dependent variable has only two outcomes; either it occurs or it doesn’t occur.

X (nominal)> Y (yes/no)
e.g. team in which someone works > becoming unemployed ( 0 = no & 1 = yes)

6. Multiple binary logistic regression analysis


Gender



Salary Becoming unemployed



Team in which someone works


Overview

Independent variable Dependent variable
Quantitative (continuous) Qualitative (nominal)
Smaller number (1 or 2) qualitative ANOVA Table analysis or long linear
analysis = not in exam
Every number qualitative and/or Bivariate/multiple regression Bivariate/multiple logistic
quantitative analysis and path analysis regression analysis




3

, Chapter 6: ANOVA

Logic of AONVA
Team in which someone works (x) > organizational commitment (y)

Substantive hypothesis
A person’s degree of organizational commitment (y) depends on the team in which he/she works (x)

Fundamental principle of ANOVA
Analyses the ratio of the two components of total variance in data: between-group variance and
within-group variance



Information on variance of average scores between groups

Information on variance of scores within groups



Between-group variance measures systematic differences between groups and all other variances
that influences Y, either systematically or randomly (‘residual variance’ or ‘error’)

Within-group differences measures influence of all other variables that influence Y either
systematically or randomly (‘residual variance’ or ‘error’)

There is more systematic difference when differences within a team are small (more coherent).
Consequently, differences between teams are more clear.



Important to realize

Any difference within a group cannot be due to differences between the groups because everyone in
a particular group has the same group score; so, within-group differences must be due to systematic
unmeasured factors (e.g. individual differences like gender) or random measurement error.

Any observed differences between groups are probably not only pure between-group differences,
but also differences due to systematic unmeasured factors or random measurement error.

So, basically, we are comparing between-group variability to within-group variability to learn about
the size of the systematic group effect.



Statistical 0 hypothesis
Mean scores of populations (k) corresponding to the groups in the study are all equal to each other >
H0: µ1 = µ2 = … = µk OR all things are equal (=) to 0

Alternative hypothesis
Not all groups are different from each other, but there are two groups different and possibly more.

Why prefer ANOVA instead of separate t-tests for means?
One will make the mistake of concluding that there is an effect, while there is not (Type I error)


4

Beoordelingen van geverifieerde kopers

Alle reviews worden weergegeven
11 maanden geleden

1,0

1 beoordelingen

5
0
4
0
3
0
2
0
1
1
Betrouwbare reviews op Stuvia

Alle beoordelingen zijn geschreven door echte Stuvia-gebruikers na geverifieerde aankopen.

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
annelotwesterhof Tilburg University
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
54
Lid sinds
3 jaar
Aantal volgers
8
Documenten
3
Laatst verkocht
1 week geleden

3,8

6 beoordelingen

5
2
4
3
3
0
2
0
1
1

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen