100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Tentamen (uitwerkingen)

ENGR-391-2201-AA FINAL EXAM TOPIC 4 COMPLETE MATERIAL CONCORDIA UNIVERSITY

Beoordeling
-
Verkocht
1
Pagina's
63
Geüpload op
14-11-2023
Geschreven in
2023/2024

ENGR-391-2201-AA FINAL EXAM TOPIC 4 COMPLETE MATERIAL CONCORDIA UNIVERSITY

Instelling
Vak











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Studie
Onbekend
Onbekend

Documentinformatie

Geüpload op
14 november 2023
Aantal pagina's
63
Geschreven in
2023/2024
Type
Tentamen (uitwerkingen)
Bevat
Onbekend

Onderwerpen

Voorbeeld van de inhoud

ENGR-391-2201-AA FINAL EXAM TOPIC 4 COMPLETE
MATERIAL CONCORDIA UNIVERSITY



By checking the "yes" answer below I confirm
1. that I have neither given nor received unauthorized aid to answer the questions of this
assignment.
2. I agree to follow the rules in regard of online assignments as they are posted in the
announcement forum of this class and sent to me by email via moodle

Select one:
a. Yes I agree

b. No I do not agree



Your answer is correct.
The correct answer is: Yes I agree



A first order initial value problem is solved using Euler’s method.

If we reduce the step size h = xi+1 − xi to half of it’s previous value, how do you expect
the local and global truncation errors of the solution to change?

Select one:
a. local and global errors will be about a quarter of their previous values

b. local and global errors will be about a half of their previous values
c. local and global error will be a quarter and a half of their previous values,
respectively
d. local and global errors will be a half and a quarter of their previous values,
respectively



Your answer is correct.
The correct answer is: local and global error will be a quarter and a half of their previous
values, respectively




/

,We want to approximate the defined integral I = ∫ 35 f(x)dx.
When using the trapezoidal rule in its single version we get I ≃ 153.7.
Knowing that f(4) = 24.2, how much will be the approximation of I if we use the
composite trapezoidal rule with m = 2 sub-intervals ?


Select one:
a. Not enough information to answer the question

b. None of them
c. 101.05
d. 104.2

e. 94.9
f. 145.6



Your answer is incorrect.
f(3)+f(5)
We have that

Using the composite trapezoidal rule with m = 2 we have (h = 5−3 = 1):
I≃ 1 [f(3) + f(5) + 2 ⋅ f(4)] =
The correct answer is: 101.05



The numerical stability of a method for solving initial value problems depends on

Select one:
a. only the numerical method

b. only on the number of significant digits used

c. both the numerical method and the differential equation

d. only the differential equation



Your answer is correct.
It depends on the differential equation and as well on the chosen method (different methods
can lead to stable or unstable solutions for a same differential equation). It depends as well
on how the algorithm is used (for example which step size is chosen.
The correct answer is: both the numerical method and the differential equation




/

,The Lagrange polynomial that passes through the 3 data points is given by


yi | 9.2 | 9.9 | 2.3



How much is the value of L1 (x) in x = 7.6 ?
Give at least 4 significant figures


Answer: 1.067



L1 (x) is given by


Reference: lecture on Lagrange interpolation of topic 4 "Regression and interpolation"


The correct answer is: 3.977




Consider the linear equation ax = b with solution r = b
a.
How much is the maximal relative error magnification factor for this equation for the
approximation xr of the solution r?

Select one:

a.
b. |axr|
c. 1

d.



Your answer is correct.

Written in matrix form the system writes: [a]x = [b]. Here the coefficient matrix A is a 1x1
matrix.
The maximal error magnification factor is given by the conditioning number of the coefficient
matrix A.
In our case the coefficient matrix A is [a].



The correct answer is: 1




/

, Choose the correct statement

Select one:
a. The order of convergence for the bisection method is 1
2
b. For a given equation, every algorithm will converge eventually but with different
orders of convergence

c. The asymptotic error constant λ for the newton method is − 1


d. The fixed-point method converges linearly



Your answer is correct.
The correct answer is: The fixed-point method converges linearly




Consider the following data set:

x | 1.0| 2.0| 5.0| 7.0
y | 2.1| 2.9| 6.1| 8.3

The linear least square fitting will give the following model:

Select one:




Your answer is correct.
Reference: lectures on least square regression of topic 4

The correct answer is:




/
€10,98
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten


Ook beschikbaar in voordeelbundel

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
smartzone Liberty University
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
3198
Lid sinds
5 jaar
Aantal volgers
2291
Documenten
14397
Laatst verkocht
2 dagen geleden
AMAIZING EDUCATION WORLD

GET ALL KIND OF EXAMS ON THIS PAGE ,COMPLETE TEST BANKS,SUMMARIES,STUDY GUIDES,PROJECT PAPERS,ASSIGNMENTS,CASE STUDIES, YOU CAN ALSO COMMUNICATE WITH THE SELLER FOR ANY PRE-ORDER,ORDER AND ETC.

3,7

584 beoordelingen

5
260
4
93
3
103
2
29
1
99

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen