100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Samenvatting Queuing Problems

Beoordeling
-
Verkocht
-
Pagina's
8
Geüpload op
02-11-2023
Geschreven in
2023/2024

Uitleg aan de hand van veel voorbeelden! Onderwerpen die behandeld zijn: - M/M/1 Models - Flow Balance Equations - Equilibrium Formulas - M/M/1/c - Modelling Arrival & Service Processes - M/M/s - Finite Source Models










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Heel boek samengevat?
Onbekend
Geüpload op
2 november 2023
Aantal pagina's
8
Geschreven in
2023/2024
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Julian Klep
OR Models for Pre-Master IEM
Winston Ch. 1, 3, 9, 15, 16, 18, 20
LECTURE 12 – QUEING

M/M/1

 𝜆 questions an hour
 𝜇 answers can be provided an hour
 𝜆 < 𝜇 → statistical equilibrium
 Little’s Law Stable equilibrium
o 𝐿=𝜆⋅𝑊
o L = average number of X
present in queuing system
o 𝜆 = average number of
arrivals entering the system
o 𝑊 = average time a
customer spends in the
system
 Due to steady state behavior
(equilibrium), the steady state
probability of I customers in the Dynamical / statistical equilibrium
system is denoted by 𝑃𝑖




GEOMETRIC SERIES PROOF OF THEOREM

 If 𝜌 < 1 → Σ 𝜌 =1+𝜌+𝜌 +𝜌 +⋯ =( )
 If 𝜌 < 1 → Σ 𝑗𝜌 = 𝜌 + 2𝜌 + 3𝜌 + ⋯ = ( )
 Thus;
o ∑ 𝜌 = , the formula holds for all 𝜌 (due to l’Hôpital’s rule)


 To proof theorem
o ∑ 𝑗𝜌 = ∑ 𝑗𝜌
o Σ 𝑗𝜌 = ∑ (𝑗 + 1)𝜌 − ∑ 𝜌
o Σ 𝑗𝜌 = ∑ 𝜌 − ∑ 𝜌 −1

o Σ 𝑗𝜌 = ∑ 𝜌 − ( )
+1

o ∑ 𝑗𝜌 = 𝜌∑ 𝜌 −( )
+1
( )
o Σ 𝑗𝜌 = ( )
−1−( )
+1
o Σ 𝑗𝜌 = ( )




49

, Julian Klep
OR Models for Pre-Master IEM
Winston Ch. 1, 3, 9, 15, 16, 18, 20
FLOW BALANCE EQUATIONS




 State transition diagram:
o 𝜆𝑃 = average number of transitions per hour from state n to state n + 1
o 𝜇𝑃 = average number of transitions per hour from state n to state n – 1
 Due to equilibrium, and successive substitution
o 𝜆𝑃 = 𝜇𝑃 → 𝑃 = 𝑃
 𝑃 = 𝜌𝑃
o 𝜆𝑃 = 𝜇𝑃 → 𝑃 = 𝑃
 𝑃 = 𝜌𝑃
 Substituting P1
 𝑃 = 𝜌 ⋅ (𝜌𝑃 )
 𝑃 =𝜌 𝑃
o 𝜆𝑃 = 𝜇𝑃
 𝜆𝜌 𝑃 = 𝜇𝑃
 𝑃 =𝜌 𝑃
o Etc.
 In general, we state
o (𝜆 + 𝜇)𝑃 = 𝜆𝑃 + 𝜇𝑃
 𝑃 = 𝜌 𝑃 (𝑖 = 1, 2, … )
 Sum of all probabilities should equal 1, using above formula we get
o 1=∑ 𝑃
o 1=𝑃 ⋅Σ 𝜌 → (Σ 𝜌 = , 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑢𝑚 𝑜𝑓 𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑠𝑒𝑟𝑖𝑒𝑠 𝑝𝑎𝑔𝑒 46)

o 1=
o 𝑃 = 1−𝜌
 In general (Important)
o 𝑃 = 𝑃 ⋅ 𝜌 = (𝟏 − 𝒑)𝝆𝒊 (𝑖 = 0, 1, … )
 Utilization 𝜌
o 𝝆 = 𝟏 − 𝑷𝟎




50
€2,99
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
julian19

Maak kennis met de verkoper

Seller avatar
julian19 Universiteit Twente
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
0
Lid sinds
2 jaar
Aantal volgers
0
Documenten
6
Laatst verkocht
-

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen