100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4,6 TrustPilot
logo-home
College aantekeningen

Algebra Integrals Integration Notes

Beoordeling
-
Verkocht
-
Pagina's
26
Geüpload op
22-10-2023
Geschreven in
2023/2024

Unlock Your Academic Success: The Ultimate Guide for Students!" Discover the secrets to excelling in your studies with this comprehensive document. Boost Your Grades Study Hacks and Tips Time Management Strategies

Instelling
Vak










Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Instelling
Vak

Documentinformatie

Geüpload op
22 oktober 2023
Aantal pagina's
26
Geschreven in
2023/2024
Type
College aantekeningen
Docent(en)
Mr smith
Bevat
Alle colleges

Onderwerpen

Voorbeeld van de inhoud

8
Techniques of Integration




Over the next few sections we examine some techniques that are frequently successful when
seeking antiderivatives of functions. Sometimes this is a simple problem, since it will be
apparent that the function you wish to integrate is a derivative in some straightforward
way. For example, faced with Z
x10 dx

we realize immediately that the derivative of x11 will supply an x10 : (x11 )′ = 11x10 . We
don’t want the “11”, but constants are easy to alter, because differentiation “ignores” them
in certain circumstances, so

d 1 11 1
x = 11x10 = x10 .
dx 11 11
From our knowledge of derivatives, we can immediately write down a number of an-
tiderivatives. Here is a list of those most often used:


xn+1
Z
xn dx = + C, if n 6= −1
n+1
Z
x−1 dx = ln |x| + C
Z
ex dx = ex + C
Z
sin x dx = − cos x + C

163

,164 Chapter 8 Techniques of Integration
Z
cos x dx = sin x + C
Z
sec2 x dx = tan x + C
Z
sec x tan x dx = sec x + C

1
Z
dx = arctan x + C
1 + x2
1
Z
√ dx = arcsin x + C
1 − x2



8.1 Substitution

Needless to say, most problems we encounter will not be so simple. Here’s a slightly more
complicated example: find Z
2x cos(x2 ) dx.

This is not a “simple” derivative, but a little thought reveals that it must have come from
an application of the chain rule. Multiplied on the “outside” is 2x, which is the derivative
of the “inside” function x2 . Checking:

d d
sin(x2 ) = cos(x2 ) x2 = 2x cos(x2 ),
dx dx
so Z
2x cos(x2 ) dx = sin(x2 ) + C.

Even when the chain rule has “produced” a certain derivative, it is not always easy to
see. Consider this problem: Z p
x3 1 − x2 dx.
p
There are two factors in this expression, x3 and 1 − x2 , but it is not apparent that the
chain rule is involved. Some clever rearrangement reveals that it is:
 
1
Z p Z p
3
x 1− x2 dx = (−2x) − (1 − (1 − x2 )) 1 − x2 dx.
2

This looks messy, but we do now have something that looks like the result of the chain

rule: the function 1 − x2 has been substituted into −(1/2)(1 − x) x, and the derivative

, 8.1 Substitution 165

of 1 − x2 , −2x, multiplied on the outside. If we can find a function F (x) whose derivative

is −(1/2)(1 − x) x we’ll be done, since then
 
d 2 2 1 p

F (1 − x ) = −2xF (1 − x ) = (−2x) − (1 − (1 − x2 )) 1 − x2
dx 2
p
= x3 1 − x2

But this isn’t hard:
1 √ 1
Z Z
− (1 − x) x dx = − (x1/2 − x3/2 ) dx (8.1.1)
2 2
 
1 2 3/2 2 5/2
=− x − x +C
2 3 5
 
1 1
= x− x3/2 + C.
5 3

So finally we have
 
1 1
Z p
3 2
2
x 1 − x dx = (1 − x ) − (1 − x2 )3/2 + C.
5 3

So we succeeded, but it required a clever first step, rewriting the original function so
that it looked like the result of using the chain rule. Fortunately, there is a technique that
makes such problems simpler, without requiring cleverness to rewrite a function in just the
right way. It sometimes does not work, or may require more than one attempt, but the
idea is simple: guess at the most likely candidate for the “inside function”, then do some
algebra to see what this requires the rest of the function to look like.
One frequently good guess is any complicated expression inside a square root, so we
start by trying u = 1 − x2 , using a new variable, u, for convenience in the manipulations
that follow. Now we know that the chain rule will multiply by the derivative of this inner
function:
du
= −2x,
dx
so we need to rewrite the original function to include this:

√ −2x x2 √ du
Z p Z Z
3 3
x 1 − x2 = x u dx = u dx.
−2x −2 dx

Recall that one benefit of the Leibniz notation is that it often turns out that what looks
like ordinary arithmetic gives the correct answer, even if something more complicated is
€2,69
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
siyabongadlamini

Maak kennis met de verkoper

Seller avatar
siyabongadlamini Vaal University of Technology
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
0
Lid sinds
2 jaar
Aantal volgers
0
Documenten
29
Laatst verkocht
-

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen