100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

samenvatting - information retrieval

Beoordeling
-
Verkocht
1
Pagina's
3
Geüpload op
19-10-2023
Geschreven in
2023/2024

Samenvatting van het stuk 'Learning to rank for information retrieval from user interactions' door Hofmann et al. (2014). Er wordt een information retrieval systeem gepresenteerd dat zijn resultaten kan verbeteren door te leren van gebruikersinteracties.

Meer zien Lees minder








Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Documentinformatie

Geüpload op
19 oktober 2023
Bestand laatst geupdate op
25 oktober 2023
Aantal pagina's
3
Geschreven in
2023/2024
Type
Samenvatting

Voorbeeld van de inhoud

10 - Learning to rank for information retrieval from user interactions -
Hofmann et al. (2014)


Hofmann et al (2014) presenteren een information retrieval systeem dat zijn resultaten kan
verbeteren door te leren van gebruikersinteracties. Door te leren van zulke interacties kan het
systeem een steeds betere ranking van de opgehaalde informatie bepalen. De data die wordt
gebruikt om een optimale ranking te leren bevat vaak veel ruis, wat het leren een stuk
ingewikkelder maakt. In dit artikel worden een aantal oplossingen gepresenteerd om ondanks de
ruis in de data toch efficient te kunnen leren:
• Welke nieuwe methoden dragen Hofmann et al (2014) aan?
• Waarom verbeteren deze methoden het leren van een optimale ranking functie?


- reasons learning directly from user interaction is difficult:
1. they are hard to interpret as feedback for learning because they are biased and noisy
2. the system can only observe feedback on actions shown to users → exploration/exploitation
3. amount of feedback & quality of learning is limited by the number of user interactions, so its
important to use the observed data as effectively as possible


- information retrieval (IR) systems provide easy access to constantly growing source of info
→ the user submits a query, receives a ranked list of results, and follows the best one
- making a result ranking as useful as possible depends on context (users age, location, etc)


- self-learning search engines: learn directly from natural interactions with their users online
→ can adapt and improve their rankings to the setting they are deployed in


- search interactions are noisy indicators that may correlate with preferences (dont reflect them)
→ are affected by how results are presented → influence which results are clicked, what makes
distinguishing the effects of true ranking quality hard
- solutions, focusing on evaluation and learning of ranking functions for IR:
1. an interleaved comparison method that allows unbiased and fine-grained ranker comparison
using noisy click data and that allows reuse of such data for new comparisons
2. an approach for modeling and compensating for click bias in user interactions with a web
search engine
3. an experimental framework that allows the assessment of online learning to rank methods for
IR using annotated data sets and clock models
4. learning approaches that improve the online performance of self-learning search engines by
balancing exploration and exploitation
5. methods for reducing the effects of click noise in learning to rank by reusing previously
observed interaction data
€3,99
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
immederoever

Maak kennis met de verkoper

Seller avatar
immederoever Universiteit van Amsterdam
Bekijk profiel
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
4
Lid sinds
2 jaar
Aantal volgers
3
Documenten
17
Laatst verkocht
2 jaar geleden

0,0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen